

United States
Department of
Agriculture
Natural
Resources
Conservation
Service

In cooperation with
Colusa County Resource
Conservation District; State of California, Department of Conservation; Regents of the University of California; United States Department of Agriculture, Forest Service; and United States Department of the Interior, Bureau of Land Management and Fish and Wildlife Service

Soil Survey of Colusa County, California

How To Use This Soil Survey

General Soil Map

The general soil map, which is the color map preceding the detailed soil maps, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps follow the general soil map. These maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets, which precedes the soil maps. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Summary of Tables shows which table has data on a specific land use for each detailed soil map unit. See the Contents for sections of this publication that may address your specific needs.

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 1996. Soil names and descriptions were approved in 1999. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 1998. This survey was made cooperatively by the Natural Resources Conservation Service and the Colusa County Resource Conservation District; State of California, Department of Conservation; Regents of the University of California; United States Department of Agriculture, Forest Service; and United States Department of the Interior, Bureau of Land Management and Fish and Wildlife Service. The survey is part of the technical assistance furnished to the Colusa County Resource Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of minor soils that could have been shown at a larger scale.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Cover: Davis Ranch House, which was built by Howell and Sebina Davis. The building was completed in 1893. It was constructed with bricks made from the Vina soils on the property.

Additional information about the Nation's natural resources is available on the Natural Resources Conservation Service homepage on the World Wide Web. The address is http://www.nrcs.usda.gov (click on "Technical Resources").

Contents

How To Use This Soil Survey 1
Summary of Tables 7
Foreword 9
General Nature of the County 11
History and Development 11
Water Supply 14
Physiography, Relief, and Drainage 14
Flooding 16
Agriculture 17
Climate 18
How This Survey Was Made 19
General Soil Map Units 23

1. Vina-Moonbend-Scribner Association 23
2. Willows-Clear Lake-Capay Association 23
3. Westfan-Mallard Association 24
4. Hillgate-Arbuckle-Corval-Corning Association 24
5. Altamont-Ayar-Sehorn Association 25
6. Millsholm-Goldeagle-Contra Costa Association 26
7. Capay-Hillgate-Saltcanyon Association 26
8. Venado-Leesville Association 27
9. Okiota-Henneke Association 27
10. Maymen-Etsel Association 28
11. Neuns-Goulding Association 28
12. Freezeout-Yollabolly Association 28
Detailed Soil Map Units 33
100-Capay clay loam, 0 to 1 percent slopes, occasionally flooded 36
101-Capay silty clay, 0 to 2 percent slopes, frequently flooded 37
102-Capay clay loam, 0 to 1 percent slopes 38
103-Capay clay loam, 0 to 1 percent slopes, frequently flooded 39
104-Willows silty clay, 0 to 1 percent slopes, frequently flooded 39
105-Willows silty clay, 0 to 1 percent slopes, occasionally flooded 40
106-Willows silty clay, 0 to 1 percent slopes 41
107-Scribner silt loam, 0 to 1 percent slopes, occasionally flooded 42
108-Scribner silt loam, 0 to 1 percent slopes 43
109—Scribner silt loam, 0 to 1 percent slopes, frequently flooded 44
110—Hustabel sandy loam, 0 to 1 percent slopes 44
112-Westfan loam, 0 to 2 percent slopes 45
113-Westfan loam, sodic, 0 to 2 percent slopes 46
114-Westfan clay loam, 0 to 1 percent slopes 47
115-Clear Lake clay, 0 to 1 percent slopes, occasionally flooded 47
116-Clear Lake clay, calcareous, 0 to 2 percent slopes, occasionally flooded 48
117-Clear Lake clay, calcareous, 0 to 1 percent slopes, frequently flooded 49
118-Clear Lake clay, 0 to 2 percent slopes, frequently flooded 50
124-Moonbend silt loam, 0 to 2 percent slopes, occasionally flooded 51
125-Moonbend silt loam, 0 to 2 percent slopes 52
126—Moonbend silt loam, 0 to 2 percent slopes, frequently flooded 52
127-Mallard clay loam, 0 to 1 percent slopes 53
128-Mallard loam, 0 to 1 percent slopes 54
129-Mallard clay loam, 0 to 1 percent slopes, occasionally flooded 55
130-Corbiere silt loam, 0 to 1 percent slopes 55
131-Corbiere silt loam, 0 to 2 percent slopes, frequently flooded 56
133-Corbiere silt loam, 0 to 2 percent slopes, occasionally flooded 57
136-Colusa loam, 0 to 2 percent slopes 58
141-Myers clay, 0 to 2 percent slopes 59
144—Hillgate clay loam, 0 to 2 percent slopes 59
145—Hillgate loam, 0 to 2 percent slopes 60
147-Hillgate loam, 1 to 5 percent slopes 61
150—Arbuckle sandy loam, 1 to 5 percent slopes 62
151-Arbuckle-Hillgate complex, 1 to 5 percent slopes 63
152—Arbuckle gravelly loam, 1 to 5 percent slopes 64
155—Alcapay clay, 0 to 1 percent slopes 65
160-Grandbend loam, 0 to 2 percent slopes 65
170-Vina loam, 0 to 2 percent slopes, frequently flooded 66
171-Vina loam, 0 to 2 percent slopes 67
172—Vina fine sandy loam, 0 to 2 percent slopes, frequently flooded 68
174-Vina loam, 0 to 2 percent slopes, occasionally flooded 68
175-Tujunga loam, overwash, 0 to 2 percent slopes, frequently flooded 69
176-Columbia fine sandy loam, 0 to 2 percent slopes, frequently flooded 70
177-Holillipah loamy sand, channeled, 0 to 2 percent slopes 71
185-Riverwash 71
187-Westfan loam, 0 to 2 percent slopes, occasionally flooded 72
188-Westfan loam, clay substratum, 0 to 2 percent slopes 73
189—Arand very gravelly sandy loam, 0 to 2 percent slopes 73
190-Arand very gravelly loam, 0 to 2 percent slopes 74
193-Westfan gravelly loam, 0 to 2 percent slopes 75
200-Clear Lake clay, 0 to 2 percent slopes, occasionally flooded 76
204-Capay clay, 0 to 3 percent slopes, occasionally flooded 76
205-Capay clay, 0 to 3 percent slopes 77
206-Capay clay, 5 to 9 percent slopes 78
210-Corval loam, 0 to 3 percent slopes 79
211—Corval clay loam, 0 to 3 percent slopes 79
212—Ayar clay, 5 to 15 percent slopes 80
213-Ayar clay, 15 to 30 percent slopes 81
215-Altamont-Sehorn complex, 15 to 30 percent slopes 82
216-Altamont-Sehorn complex, 9 to 15 percent slopes 83
218-Sehorn-Altamont complex, 30 to 50 percent slopes 85
220—Altamont silty clay, 5 to 9 percent slopes 86
221—Altamont silty clay, 9 to 15 percent slopes 87
230-Corning clay loam, 1 to 5 percent slopes 88
232—Maywood gravelly loam, 0 to 2 percent slopes, occasionally flooded 88
233—Eastpark clay loam, 0 to 2 percent slopes 89
241-Contra Costa-Altamont association, 30 to 50 percent slopes 90
253-Millsholm-Altamont-Rock outcrop complex, 5 to 15 percent slopes 91
255-Millsholm-Rock outcrop complex, 9 to 30 percent slopes 92
257-Millsholm-Capay complex, 3 to 9 percent slopes 93
261—Millsholm-Altamont complex, 15 to 30 percent slopes 94
270-Balcom-Ayar complex, 15 to 30 percent slopes 95
271—Balcom-Ayar complex, 30 to 50 percent slopes 97
275-Goldeagle-Positas-Balcom complex, 30 to 75 percent slopes 98
276—Positas gravelly sandy loam, 30 to 50 percent slopes 100
280—Skyhigh-Millsholm complex, 15 to 50 percent slopes 100
300-Contra Costa-Millsholm complex, 50 to 75 percent slopes 101
305-Contra Costa loam, 50 to 75 percent slopes 102
311-Contra Costa loam, 9 to 15 percent slopes 103
312—Saltcanyon loam, 1 to 5 percent slopes 104
313—Saltcanyon loam, 5 to 9 percent slopes 105
315-Mallard clay loam, 2 to 5 percent slopes 106
316-Hillgate loam, 5 to 9 percent slopes 106
320—Millsholm loam, 5 to 30 percent slopes 107
329-Sehorn-Millsholm-Altamont complex, 15 to 30 percent slopes 108
330-Millsholm-Contra Costa complex, 15 to 30 percent slopes 109
331—Sehorn-Millsholm-Rock outcrop complex, 30 to 50 percent slopes 111
332-Millsholm-Rock outcrop association, 30 to 75 percent slopes 112
334-Millsholm-Contra Costa association, 30 to 75 percent slopes 113
337-Millsholm-Saltcanyon association, 5 to 15 percent slopes 114
345-Skyhigh-Sleeper-Millsholm association, 15 to 30 percent slopes 115
346-Skyhigh-Millsholm-Sleeper association, 30 to 50 percent slopes 116
347-Boar-Sleeper complex, 15 to 30 percent slopes 118
348-Boar-Sleeper complex, 30 to 50 percent slopes 119
350-Haploxererts, 30 to 50 percent slopes 120
355-Venado clay, 0 to 2 percent slopes 121
360-Bearvalley gravelly sandy loam, 2 to 5 percent slopes 122
365-Leesville clay loam, 2 to 5 percent slopes 123
366-Leesville clay loam, 0 to 2 percent slopes 123
370-Livermore very gravelly loam, 5 to 9 percent slopes 124
371-Buttes-Millsholm complex, 30 to 50 percent slopes 125
519-Stonyford-Guenoc complex, 5 to 15 percent slopes 126
520-Stonyford-Guenoc complex, 15 to 30 percent slopes 127
521-Stonyford-Guenoc complex, 30 to 50 percent slopes 128
524—Arand-Riverwash complex, 0 to 2 percent slopes, frequently flooded 130
526-Etsel-Maymen-Marpa association, 30 to 50 percent slopes 131
527-Maymen-Etsel-Speaker association, 30 to 50 percent slopes 132
528-Maymen-Etsel-Snook complex, 30 to 75 percent slopes 134
529-Maymen-Etsel-Mayacama complex, 30 to 75 percent slopes 135
542-Okiota-Dubakella-Henneke complex, 15 to 50 percent slopes 137
545-Henneke-Montara-Rock outcrop complex, 15 to 50 percent slopes 138
548-Henneke-Okiota complex, 30 to 50 percent slopes 139
549-Henneke-Okiota complex, 50 to 75 percent slopes 140
557-Neuns-Bamtush-Speaker complex, 30 to 50 percent slopes 141
564-Fouts-Yorkville-Squawrock association, 15 to 50 percent slopes 143
570-Endoaquolls, 0 to 2 percent slopes, frequently ponded 144
590-Neuns-Marpa-Goulding complex, 30 to 50 percent slopes 145
591-Neuns-Sheetiron-Goulding complex, 30 to 50 percent slopes 147
592-Neuns-Goulding-Sheetiron complex, 50 to 75 percent slopes 148
596-Yollabolly-Rock outcrop-Freezeout complex, 50 to 75 percent slopes 150
597-Yollabolly-Freezeout complex, 30 to 50 percent slopes 151
599—Freezeout-Yollabolly complex, 30 to 50 percent slopes 152
600-Freezeout-Yollabolly association, 50 to 75 percent slopes 153
610-Neuns-Bamtush-Goulding association, 30 to 50 percent slopes 154
650-Bamtush-Marpa complex, 15 to 30 percent slopes 156
651-Bamtush-Marpa complex, 30 to 50 percent slopes 157
652-Water 158
Use and Management of the Soils 159
Interpretive Ratings 159
Crops and Pasture 159
Major Management Factors 159
Major Management Measures 161
Field and Row Crop Management 164
Rice and Small Grain Management. 165
Orchard Management 166
Yields per Acre 167
Land Capability Classification 167
Important Farmlands 168
Prime Farmland 168
Farmland of Statewide Importance 169
Storie Index 169
Rangeland 171
Recreational Development 175
Engineering 179
Building Site Development 179
Sanitary Facilities 183
Construction Materials 187
Water Management 188
Soil Properties 427
Engineering Index Properties 427
Physical and Chemical Properties 428
Soil Features 430
Water Features 430
Physical and Chemical Analyses of Selected Soils 431
Classification of the Soils 551
Soil Series and Their Morphology 551
Alcapay Series 551
Altamont Series 554
Arand Series 555
Arbuckle Series 555
Ayar Series 556
Balcom Series 557
Bamtush Series 558
Bearvalley Series 559
Boar Series 560
Buttes Series 561
Capay Series 562
Capay Taxadjunct 562
Clear Lake Series 564
Columbia Series 565
Colusa Series 565
Contra Costa Series 566
Corbiere Series 567
Corning Series 568
Corval Series 569
Dubakella Series 570
Eastpark Series 571
Endoaquolls 572
Etsel Series 573
Fouts Series 573
Freezeout Series 574
Goldeagle Series 575
Goulding Series 576
Grandbend Series 577
Guenoc Series 585
Haploxererts 585
Henneke Series 586
Hillgate Series 587
Holillipah Series 588
Hustabel Series 588
Leesville Series 589
Livermore Series 590
Mallard Series 591
Marpa Series 592
Mayacama Series 593
Maymen Series 593
Maywood Series 594
Millsholm Series 595
Montara Series 596
Moonbend Series 596
Myers Series 597
Neuns Series 598
Okiota Series 599
Positas Taxadjunct 599
Riverwash 600
Saltcanyon Series 600
Scribner Series 601
Sehorn Series 602
Sheetiron Series 603
Skyhigh Series 604
Sleeper Series 605
Snook Series 605
Speaker Series 606
Squawrock Taxadjunct 607
Stonyford Series 607
Tujunga Series 608
Venado Series 609
Vina Series 610
Westfan Series 611
Willows Series 612
Yollabolly Series 613
Yorkville Series 614
Formation of the Soils 617
References 623
Glossary 625
Appendices 641

Summary of Tables

Table 1.-Temperature and Precipitation 21
Table 2.-Freeze Dates in Spring and Fall 22
Table 3.-Growing Season 22
Table 4.-Acreage and Proportionate Extent of the Soils 34
Table 5.-Limitations Affecting Irrigated Cropland 189
Table 6.-Yields Per Acre of Crops 207
Table 7.—Land Capability Classification 211
Table 8.-—Prime Farmland 220
Table 9.-Additional Farmland of Statewide Importance 221
Table 10a.-Storie Index 222
Table 10b.-Storie Index 230
Table 11.-Rangeland Productivity and Characteristic Plant Communities 232
Table 12.-Recreational Development (Part 1) 245
Table 13.-Recreational Development (Part 2) 272
Table 14.—Building Site Development (Part 1) 295
Table 15.—Building Site Development (Part 2) 315
Table 16.-Sanitary Facilities (Part 1) 332
Table 17.—Sanitary Facilities (Part 2) 349
Table 18.-Construction Materials (Part 1) 374
Table 19.-Construction Materials (Part 2) 396
Table 20.-Water Management 412
Table 21.-Engineering Index Properties 432
Table 22.-Physical Properties of the Soils 471
Table 23.-Chemical Properties of the Soils 489
Table 24.-Erosion Properties of the Soils 508
Table 25.-Soil Features 527
Table 26.—Water Features 534
Table 27.—Physical Analyses of Selected Soils 546
Table 28.-Chemical Analyses of Selected Soils 548
Table 29.-Classification of the Soils 552

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, ranchers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations that affect various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Charles W. Bell
State Conservationist
Natural Resources Conservation Service

Soil Survey of Colusa County, California

By William R. Reed, Natural Resources Conservation Service
Fieldwork by William D. Broderson, Karen Colby, Robert G. Kurowski, Paul N. Lake, William R. Reed, Ken Simeral, Michael L. Whiting, and Jack Wright, Natural Resources Conservation Service
United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with Colusa County Resource Conservation District; State of California, Department of Conservation; Regents of the University of California; United States Department of Agriculture, Forest Service; and United States Department of the Interior, Bureau of Land Management and Fish and Wildlife Service

Colusa County has a total area of 737,920 acres, or approximately 1,149 square miles. It is bounded by Glenn County on the north, Yolo County on the south, Butte and Sutter Counties on the east, and Lake County on the west (figure 1).

Elevation ranges from 7,056 feet at Snow Mountain, on the western boundary, to 35 feet at the Sacramento River, on the eastern boundary. Most of the soils in the Sacramento Valley are used for agriculture. Most of the soils in the foothills are used for livestock grazing, and the far western part of the county is in the Mendocino National Forest.

Three older soil surveys covering all or parts of this survey area were published in 1909, 1915, and 1948 (USDA, BoS, 1909 and 1915; UC, 1948). This survey has larger, more detailed maps and provides more information about the soils.

General Nature of the County

This section gives general information about the survey area. It describes history and development; water supply; physiography, relief, and drainage; flooding; agriculture; and climate.

History and Development

Prior to its settlement by Europeans in the 1850s, Colusa County was home to several American Indian Tribes. As many as 15,000 American Indians lived in
this part of the Sacramento Valley at the time of John Bidwell's expedition in 1843. One of the largest towns in the valley was Coru, which was the capital of the

Figure 1.-Location of Colusa County in California.
now extinct Colus Indian Nation and is the site of the present-day city of Colusa. The Colus, who numbered about 1,000 in 1850, subsisted on the lush native vegetation and fish of the area and resided in rancherias of 100 to 400 people. Two main American Indian Tribes lived in the vicinity of Stonyford and Lodoga. These were the Pomo and the Wintun. Several Pomo settlements were near Stonyford. They were surrounded by the larger, more dominant Wintun settlements on three sides.

Development patterns reflect the county's long-time reliance on agriculture and ties to the river and railroad for shipping agricultural goods. The first towns to develop in the county were Colusa, Grimes, and Princeton. These towns were loading points for barges carrying wheat downriver and overnight stops for stages making their way along the river road. Much of the county's early history is centered on Colusa, which was contained within a Mexican land grant deeded to an American settler named John Bidwell. By the end of 1850, Colusa consisted of a small wood-frame bar and store, with a half-story hotel overhead.

Colusa's future depended on its designation as the county seat and its establishment as the head of the navigable Sacramento River. It succeeded on the first count in 1853, when local voters chose Colusa over Monroeville (33 miles upriver) as their government seat. The city achieved its second objective during 1851 and 1852, when Colusa became the river terminus during the biggest gold-producing years in California history.

However, success was short lived. When the river was deepened as far north as Red Bluff in 1853, businesses failed and merchants tore down their shops to sell the lumber. With the advent of agriculture in the valley and the end of the mining boom, Colusa regained its prominence as a shipping center. It was the effective head of navigation for wheat barges during the 1860s and 1870s.

Colusa was incorporated in 1868. Much of the town was settled during the last decades of the 1800s. Elm, eucalyptus, walnut, and orange trees were planted between 1875 and 1880 . Today, many of those saplings have become towering shade trees. They provide Colusa with an amenity found in few other communities in the region. By 1900, the city had become the trade center for much of north Sacramento Valley. Construction of the Southern Pacific Railroad diminished the reliance on the river for commerce but did not reduce Colusa's importance as a processing and shipping point for grain. The economic base of the town is still tied to agriculture, particularly rice and prunes.

Colusa County originally included the area that is now known as Glenn County, which was formed in 1906. Colusa contains a wealth of historic buildings, including the county courthouse, which was built in 1861 and is the second oldest courthouse still in active use in California. The courthouse's Greek Revival architecture reflects the heritage of the county's first settlers, who came to Colusa from the Deep South prior to the Civil War. Other buildings of historical importance include the old Colusa Grammar School (now City Hall) and the old Colusa High School (now the Community Theater). Both are on the National Register of Historic Places.

Grimes was located on an island bounded by Sycamore Slough and the Sacramento River. Cleaton Grimes, who built a cabin on the present townsite in 1851, settled the town. Grimes became the center of the county's first major farming area during the early 1850s. The community grew because its river landing was an important point for loading river steamboats and barges. Railroad service was later provided to the community, serving the town's large grain drying and storage facility. By the turn of the century, Grimes had become a small village, with stores, a public hall, and a grain warehouse.

Princeton was founded by Dr. A. Lull in 1850. The town was laid out in the early 1850 s on the site of the Sixteen-Mile House, a roadside inn that served wagon traffic on the road to the northern mines. Princeton became a major steamboat landing on the Sacramento River during the late 1850s and the 1860s and was later served by the Southern Pacific Railroad. The community was also the site of a ferry crossing to Marysville Road. The ferry became California's first electrically powered river ferry in 1932.

In the late 1870s, Arbuckle was one of three towns in the county that were founded during the northern extension of the Southern Pacific Railroad. When College City turned down the opportunity for a rail depot in 1875, a Missouri farmer named Tacitus Arbuckle invited the railroad to his 7,320 -acre farm 3 miles to the west. Arbuckle donated the land for the depot and sidings, laid out a townsite, and began selling 25 - by 115 -foot lots for $\$ 25$ to $\$ 50$ each. By 1876, the community had 300 residents. Around town, landowners offered farmers up to 5 years free use of their land as an incentive to clear the land of chamise brush and render it suitable for crop production. Arbuckle became a lively commercial center by the turn of the 19th century. The business district served wheat, sorghum, hay, bean, and barley farmers from the surrounding area, as well as wildcatters drilling for oil in the nearby foothills. During the early 1900s, most
of the cropland around Arbuckle was used for almond orchards. The acreage of these orchards increased from only 150 acres in 1911 to about 11,000 acres in 1933.

When pioneer sheep farmer Andrew Pierce died in 1871, all of his land and possessions were left to the Christian Church. The proceeds from his estate sale were used to establish Pierce Christian College on a 9 -acre plot 3 miles east of Arbuckle. By the time classes began in 1874, the community of College City was established around the campus. Enrollment dropped through the 1880s, and the college was closed in 1894. The property was sold to the county and was used as a high school from 1897 to 1936. Enrollment had reached 162 pupils by the time the school was replaced by Pierce High School in Arbuckle.

Williams was established in 1876, when landowner W.H. Williams drew up plans for a town at the proposed Northern Railway depot some 10 miles north of Arbuckle. By the time the tracks reached Williams in the early summer of 1877, the town was well on its way to becoming a major agricultural processing and distribution center. In his history of Colusa County (Rogers, 1891), Justus Rogers notes that the first buildings in Williams were "rude and hastily constructed." However, Rogers goes on to note that by the 1890s, the town sported handsome dwellings and substantial brick buildings.

The decline of river traffic on the Sacramento River along with construction of the railroad and the partitioning of Glenn County made Williams the county's transportation hub and geographic center. The town's early success was built on the railroad and the grain products grown in the surrounding farm areas. Rice and tomatoes became the predominant farm crops during the early 1900s. With the decline of rail traffic in recent years, the town has remained a transportation hub by virtue of its location at the crossroads of Interstate 5 and State Highway 20.

Maxwell was the last of the Central PacificSouthern Pacific Railway towns to be settled in Colusa County. W.S. McCoy, landowner and constable of the area, decided to emulate Tacitus Arbuckle by developing a townsite adjacent to the route of the proposed Northern Railway. The town plat, which was drawn freehand, was recorded at the courthouse in Colusa in 1877. During the same year, a general store, a hotel, a post office, a saloon, a blacksmith and wagon shop, and several residences were built. The town was originally called Occident but was renamed in honor of George Maxwell, the town's postmaster, after he donated his land to the railroad for construction of its depot.

The tracks were laid in 1878. A construction boom ensued in the new town of Maxwell. Most of the townsite was sold to the railroad's development subsidiary, the Western Development Company, for \$1 a lot. Grain warehouses and livery stables were built as new settlers arrived and stagecoach connections were established between Maxwell and Colusa. By 1891, the community had grown to about 400 people. Dryland barley and wheat were grown on the surrounding farms, and cattle and sheep grazed the foothills to the west. Businesses in the community were entirely dependent on the farmers, and the farmers depended on the businesses for all goods and services.

Fouts Springs, Cooks Springs, and Wilbur Springs were hot spring health resorts in the late 1800s and early 1900s. Wilbur Springs is still in operation. Visitors traveled by railroad to Sites and then by stage to the resorts. The ailments treated at the springs included rheumatism and skin, kidney, and liver diseases.

The Indian Valley around Stonyford and Lodoga was initially settled in the 1850s. It was not until 1863 that the valley's first town was developed. John L. Smith founded the community of Smithville at the junction of Little Stony and Stony Creeks. The community featured a three-story hotel and a flour mill powered by water diverted from one of the creeks. In 1890, the Stony Creek Improvement Company bought the landholdings and moved the buildings to a gravelly ridge one-half mile to the southeast. The higher ground was above the flood plain and was better situated for development of a town.

Stonyford's early growth was spurred on by mining in the nearby mountains and by ranching and farming in the surrounding countryside. By 1900, the little town consisted of three hotels, two gambling houses, a saloon, a seed mill, a general store, a dance hall, and a creamery. In 1908, Stony Creek was diverted and dammed, and East Park Reservoir, the first Federal reclamation project in California, was created. Orland obtained the water rights to Stony Creek, placing a burden on dairy and alfalfa farmers in the Indian Valley and ultimately constraining growth in Stonyford. Farming in the area was further affected by erosion problems that resulted from overgrazing by sheep and cattle.

Sites was initially developed to serve a nearby stone quarry and was the terminus of a rail line from Colusa from 1886 to 1916. The railroad was never completed to Clear Lake as planned, and the hotel and school in Sites were eventually abandoned. Today, the town has about 10 homes and a town park. Similarly, Delevan now consists of a rice dryer and grain warehouse and less than a dozen homes.

Leesville was once a stage stop on the steep road between Williams and the health resorts of western Colusa County. The Leesville Hotel, built in 1878 and now a private residence, is all that remains of the town.

Water Supply

Plans to use Sacramento River water for irrigation date back to 1860, when pioneer Will Green proposed that a canal be built from Hamilton City south into Colusa County. It was not until 1889 that ground breaking on the canal began, following a long legal battle with opposing landowners. Legal obstacles continued to plague the canal as it moved south, ultimately halting construction near Maxwell in 1891. Because the diversion facilities had yet to be built and gaps along the route were incomplete, landowners ready to receive water could not do so. The Central Canal and Irrigation Company continued the project in 1904-5 and then abandoned it because of a lack of interest on the part of the landowners. The canal was subsequently acquired by the Sacramento Valley Land Company, which used it as part of its nationwide campaign to sell 20- and 40-acre farms in Glenn and Colusa Counties. By 1913, this scheme too had failed and the canal was purchased by the bondholders. By this time, water was being delivered at $\$ 7$ an acre for rice and $\$ 2$ an acre for all other crops. With the soaring demand for rice after World War I, the canal was expanded and operation passed into the hands of the Glenn-Colusa Irrigation District.

State water rights on the Sacramento River were complicated when the Federal government completed Shasta Dam in 1937. This dam added another level of flood protection to the towns on the flood plains along the Sacramento River.

The Tehema-Colusa Canal provides irrigation water to lands west of Maxwell, Williams, and Arbuckle. The canal was authorized as a Federal project in 1950. Construction began near Red Bluff in 1962. By 1980, the canal had reached Dunnigan, directly south of the Colusa County line. The canal has enabled a large area formerly used for dryland farming to be converted to orchards and row crops. It has dramatically increased the yields per acre on the west side of the valley.

Another source of irrigation water is the Colusa basin drain canal. The canal was constructed during the 1920s, when a ditch was extended from Willow Creek south to the Colusa Basin. Since 1953, individual irrigation districts have agreed to maintain the portion of the canal within their boundaries. In return, they are permitted to divert drain water for
farming. In all, the county uses a total of 968,000 acrefeet of water a year, of which 815,000 acre-feet is provided by irrigation canals. The balance is extracted from shallow wells that tap a large ground-water basin.

Efforts to control floodwater along the Sacramento River date back to the early 1900s. Winter flooding was a recurring problem on the valley floor because of the county's flat terrain and flood volumes that are exceeded by only three other rivers in the United States. After attempts to build levees along the river failed during the early 1900s, the State adopted the Sacramento River Flood Control Project and created the State Reclamation Board to administer the project.

Sacramento River floodwater is diverted through Colusa, Moulton, and Tisdale Weirs into the Sutter Bypass. The bypass drains south 40 miles to Knights Landing, where the water is diverted to the west side of the river, into the Yolo Bypass, and eventually to the Sacramento River Delta. While the State project effectively contained the water of the Sacramento River, it did not address winter flooding of the Colusa Basin, a low area parallel to and several miles west of the river. During the 1910s, Reclamation District 108 and other entities built a levee through the basin to divert floodwater from the west side of the basin between Colusa and Knights Landing. Most of the Colusa Basin is still subject to flooding.

Physiography, Relief, and Drainage

Colusa County has three physiographic regions. The Sacramento Valley occupies the eastern part and makes up about 47 percent of the county. The Coast Range foothills occupy the central to southwestern part and make up about 44 percent of the county (figure 2). The Coast Range mountains occupy the northwestern part and make up about 9 percent of the county.

The Sacramento Valley has several parts and ranges in elevation from about 25 to 200 feet. The following paragraphs describe the landforms in the valley from east to west, beginning with Butte Sink (figure 3).

Butte Sink is a depressional area between the flood plains along the Sacramento River and Sutter Buttes. Annual flooding from the Sacramento River and Butte Creek have deposited clayey sediments throughout the basin. Flooding is not controlled today as high Sacramento River flows frequently flood the area from the Moulton and Colusa Weirs. Floodwater also enters Butte Sink from Glenn and Butte Counties.

The flood plains along both sides of the Sacramento River extend west of Butte Sink. These flood plains slope gently away from the Sacramento

Figure 2.-Typical pattern of soils on the western edge of the Sacramento Valley and on the Coast Range foohills.

Figure 3.-Typical pattern of soils along the Sacramento River, near the city of Colusa.

River to the Butte Sink and Colusa Basins. Frequent overflows under natural conditions have deposited loamy soils high in content of silt and fine sand. A levee system combined with Shasta Reservoir upstream helps to control Sacramento River waters, so that the flood plains are no longer flooded on a regular basis.

The soils on the flood plains along the Sacramento River are very fertile and are among the best soils in the county. More information about the geomorphic surfaces on the flood plains is available in the section "Formation of the Soils." Several sloughs originally disseminated from the Sacramento River into the Butte Sink and Colusa Basins. Waterflow was stopped by construction of levees on the Sacramento River. These sloughs, particularly the Sycamore Slough, carried river sediments several miles from the river, creating the very productive Vina soils.

West from the flood plains along the Sacramento River, the Colusa Basin runs the length of the county north and south. Overflows containing clayey sediments from the Sacramento River and foothill streams regularly filled the Colusa Basin. Because of the construction of levees on the Sacramento River, only sediments from the foothill streams now reach the basin. The basin is mostly leveled for rice production and has little relief. Salts in the clayey sediments from the foothill streams were deposited in the basin soils, particularly Willows soils, and reclamation of the soils has been ongoing since early in the 20th century. Most basin soils have been reclaimed to several feet. The very deep clay deposits that are characterized by extremely slow permeability and a water table hamper further reclamation.

Alluvial fans are along the west side of the Sacramento Valley. They originate at the base of the foothills, at elevations of 200 to 400 feet, and gently descend to the east for several miles to the Colusa Basin. Under natural conditions, streams from the foothills flooded these alluvial fans, depositing loamy soils high in fertility. Many of the streams have been diverted from their natural channels, and levees have been constructed in some areas to control flooding. Several geomorphic surfaces and terraces associated with these alluvial fans and with the adjacent areas are described in the section "Formation of the Soils."

Most of the foothill region is drained by streams flowing east to the Sacramento Valley. These streams occasionally carry heavy volumes from high rainfall events and cause flooding in the Sacramento Valley, along the west-side alluvial fans and in the Colusa Basin. Increased runoff has scoured and lowered the stream channels of many foothill streams. Some streams have been diverted or channelized in the

Sacramento Valley. Diversion and channelization of these streams help to protect farmland, towns, and roads. The foothill streams eventually find their way to the Colusa Basin and to the Colusa Basin Drain. Occasionally, the flow volumes exceed the capacity of the south-flowing Colusa Basin Drain and widespread flooding occurs in the basin.

The Coast Range foothills range from about 200 to 2,500 feet in elevation. The lower foothills have rolling slopes in many areas and have clayey soils and very few oak trees. In most foothill areas the soils are strongly sloping and are shallow or moderately deep over sandstone and shale of the Great Valley Formation. Most small valleys in the foothills have gently sloping, clayey soils and some areas of loamy soils. A larger valley runs south from Stonyford through Indian Valley and down into Bear Valley at elevations of 1,200 to 1,500 feet. Slopes are gentle to rolling, and there is a variety of soils. Several geomorphic surfaces occur in the valleys near Stonyford and in Indian Valley. These surfaces are described in the section "Formation of the Soils." Bear Valley has unique soils that formed in alluvium derived mostly from areas of serpentinite rock on the Coast Range.

The Coast Range Mountains range in elevation from about 1,200 feet west of Stonyford to 7,056 feet at the summit of Snow Mountain. The soils become colder and moister with increasing elevation and precipitation. Typically, the soils in the mountains are steep, are shallow or moderately deep, and formed in material weathered from schist rocks of the Franciscan Formation. Commercial coniferous forests grow above about 3,000 feet. Below about 3,000 feet, the mountains are dominated by brush, the soils become shallow, and there are large areas where the soils are underlain by serpentinite rocks, have excessive amounts of magnesium, and are deficient in calcium.

Streams flowing east from the Coast Range summits in the western and northwestern parts of the county flow to the Stonyford Valley area and then flow north, following the valley into Glenn County, where they eventually join the Sacramento River. These streams can carry large volumes during heavy rainfall and snowmelt events. Streams flowing east in the southwestern part of the Coast Range flow into Bear Valley and then flow south and eventually join Cache Creek in Yolo County.

Flooding

Flooding determinations were made for all of the map units in the Sacramento Valley and the upland
valleys in this survey area. Flooding frequency is described as frequent, occasional, rare, and none. Frequent means that flooding is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); and none that it is not probable (the chance of flooding is nearly 0 percent; flooding occurs less than 1 time in 500 years).

Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days.

The frequently flooded area of the Colusa Basin was estimated from aerial photographs of a small flood event on January 24, 1978. The extent of the frequently flooded area was delineated. Water enters the basin from Willow Creek to the north and from numerous creeks to the west. Corps of Engineers project levees protect the Colusa Basin from the floodwater of the Sacramento River. Flooding in the Colusa Basin begins when the flow at the Highway 20 gauging station on the Colusa Basin Drain exceeds 2,100 cubic feet per second. The flood on January 24, 1978, produced a reading of 4,020 cubic feet per second at the Highway 20 gauging station. This flood was of long duration. Data from the California Department of Water Resources indicate that flows of approximately 2,000 to 4,000 cubic feet per second occur in about 50 percent of the years recorded in the Colusa Basin.

Butte Sink receives water from Butte Creek and the Sacramento River to the north, beyond the project levees. Most small flood events consist of overflows of Butte Creek. As the Sacramento River keeps rising, the Colusa Weir flows into the Butte Sink. At the higher river stages, the Moulton Weir spills water into the Butte Sink and finally, during large events, the Sacramento River overflows upstream in Glenn and Tehama Counties and the water travels south on the east side of the Sacramento River to Butte Sink. On the basis of data from both weirs, areas in and downstream from the Colusa and Moulton Weirs are considered to be frequently flooded. Frequently flooded areas of the Butte Sink were estimated from aerial photographs of the extent of the flood on January 24, 1978, which was a small event typical of what occurs on average every other year.

The occasionally flooded area of the Butte Sink and the Colusa Basin was estimated on the basis of larger
flood events on March 4 and March 8, 1988. Lines from aerial photographs traced the extent of the flood. The events of March 4 and March 8 produced a reading of 5,720 cubic feet per second at the Highway 20 gauging station. Data from the California Department of Water Resources indicate that a flow of 5,720 cubic feet per second at Highway 20 occurs in about 20 percent of the years recorded.

The rarely flooded areas of the valley were estimated by several methods. National Flood Insurance Program Rate Maps (FIRM) from a 1958 flood were used for many areas. The high water lines from a large flood in February 1986 also were used. Some of this information was obtained from landowner interviews, elevation analysis, and soil morphology.

Data from the Colusa and Moulton Weirs taken since 1943, when Shasta Reservoir went into operation, indicate that both weirs flow on a frequent basis. Careful study of flow data at the Colusa and Moulton Weirs showed that the more elevated areas of the flood plain inside the Sacramento River levees are occasionally flooded for brief periods. Most of these areas are used for orchards and consist of Vina or Moonbend soils. All other areas inside the levees are frequently flooded for long periods.

The hazard of flooding has been reduced in protected areas. Reclamation District 108 maintains a levee on the east side of the main Colusa Basin Drain. Because of this levee, the hazard of flooding is only rare in the areas east of the drain. Levees in the Butte Sink south of Gridley Road protect the area from most overflows of Butte Creek but not from the larger overflows of the Sacramento River. Information gathered indicates that the area has been flooded at least 6 times in the last 30 years, so the area was designated as occasionally flooded.

Data from gauging stations indicate that upland streams entering the west side of the Sacramento Valley carry water in their immediate channels just slightly more than every other year on long-term average. The immediate stream channels are generally minor components on the soil maps and are considered to be frequently flooded. Areas on alluvial fans adjacent to the stream channels are considered to be occasionally flooded unless they are protected by levees or stream channel diversions. Some streams have low levees on one or both sides. These levees protect areas near the edge of the Colusa Basin.

Agriculture

Agriculture developed quickly in the county as swamps were drained and reclaimed, native grasslands were plowed, and woodlands were cleared.

The basic crop was initially dryland wheat or barley. Some fairly extensive orchards were established.

Early dryland wheat farming was quite profitable in the late 1800s, before natural soil fertility was reduced and yields dropped. In 1889, Colusa County had the highest per capita income of any county in the United States. As a history of the county indicates, "The farming community in this vicinity is in a flourishing condition, good houses, good barns and good fences, with the greatest average number of wealthy men of any vicinity in the valley" (Green, 1880).

Cropland makes up about 235,000 acres, or approximately one-third of the county's total land area. Nearly all of the cultivated land is in the Sacramento Valley, but some farming also takes place in the upland Indian, Antelope, and Bear Valleys.

Colusa County remains a major agricultural area. Its agricultural products were worth $\$ 322,922,000$ in 1997.

In 1978, the average farm size in the county was 748 acres. This figure is a bit misleading, since it includes very large ranches in the hills. Some cattle and sheep ranches are larger than 10,000 acres. About 70 percent of the farms were actually smaller than 500 acres. About 175 farms consisting of orchards southwest of Arbuckle and along the river are smaller than 50 acres. In 1978, families or partnerships operated more than 90 percent of the farms in the county.

Rice is the dominant crop in the county. It is grown on about 100,000 acres in the Colusa and Sutter Basins. Tomatoes, wheat, beans, vine seed crops, and orchard crops are grown on flood plains and alluvial fans.

Sheep were the primary grazers in the western foothills at first but have been steadily replaced by cattle during the past 75 years, in line with national trends. Recently, year-round resident cattle operations have been increasingly replaced by operations in which winter and spring grazing land is leased to northern cattle operators and cattle are transported north during the summer and early fall months.

Livestock is the greatest consumer of land resources in the county. More than 200,000 acres is used for grazing, but this acreage accounts for just under 5 percent of the county's agricultural income. Most of the livestock is raised in the foothills and mountains.

The dominant agricultural enterprises in the county are farming in the Sacramento Valley and in the smaller upland valleys and cattle or sheep grazing in the foothills. The 235,000 acres of active farmland and 200,000 acres of rangeland make up about 60 percent of the land area in the county.

Climate

The climate of Colusa County is characterized by warm, dry summers. Winters are cool and moist in the Sacramento Valley and cold and wet on the Coast Range. The climate varies widely because of variations in the topography of the county.

Table 1 gives data on temperatures and precipitation for the survey area as recorded at Colusa and East Park Reservoir in the period 1961 to 1990. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on length of the growing season.

The Coast Range receives abundant precipitation. The higher elevations receive more than 50 inches per year. The Coast Range shields the Sacramento Valley from excessive precipitation. Pacific storms generally enter the county from the west, and precipitation diminishes as elevations drop from the crest of the Coast Range to the Sacramento Valley in a rainshadow effect. Pacific storms are generally mild. Occasionally, a strong, warm, persistent storm generated to the southwest in the north-central Pacific drops a large amount of rainfall that causes widespread flooding along streams and in the Colusa Basin and in Butte Sink.

Most precipitation falls during a pronounced rainy season from November through March. Colusa receives more than 81 percent of its average annual precipitation during this season. Little, if any, precipitation usually falls in the period June through August. On the average, less than 1 inch of precipitation falls at Colusa from May through September. Thunderstorms occur on only 5 days of the year, on average, at Colusa and are not severe. They are more frequent on the Coast Range.

Temperatures vary with elevation across the county. Sacramento Valley is the warmest part of the county. It has summer afternoon temperatures in the upper 90s. The Coast Range, above an elevation of 5,000 feet, has summer afternoon temperatures in the 70s. At Colusa, average winter temperatures are 49.8 degrees F and average summer temperatures are 74.6 degrees F. Cool south winds, of coastal marine origin, flow through the Carquinez Straits and cool the Sacramento Valley in the summer months. Occasional heat waves with temperatures over 100 degrees F occur when an air-pressure pattern with resultant north winds cuts off the flow of cool marine air into the Sacramento Valley from the San Francisco Bay area. Winter temperatures are moderated by the relative proximity of the county to the Pacific Ocean and to the Sierra Nevada Mountains to the east, which deflect cold continental air. Temperatures below freezing
generally occur from November to March and become more frequent with increasing elevation.

Snowfall is very rare in the Sacramento Valley and increases in amount with elevation through the foothills and into the Coast Range. The greatest snow depth recorded at Colusa was 8 inches on January 8, 1973. Snowfall occurs occasionally in the foothills below 2,000 feet and may accumulate to depths of a few inches. On the Coast Range snow can accumulate to depths of 5 or 6 feet at elevations above 5,000 feet. Snow is usually evident on Snow Mountain from November to May.

Prevailing winds are from the southwest and are generally light throughout the survey area, except for exposed ridgetops on the Coast Range and open areas of the Sacramento Valley. Strong winds are rare. Thunderstorms are uncommon and are not severe, and tornadoes are almost unknown.

Cloud cover is considerable in the winter months and averages 52 percent at Colusa. Radiational cooling fog, forming in late night and early morning hours, is common in December and January. Under stagnant weather conditions, this fog can persist for many days. Clear skies are typical in late spring, summer, and early fall. At Colusa the sun shines an average of 96 percent of the time possible during the summer months.

Relative humidity is very low on summer afternoons, making the summer heat more tolerable. Humidity is high throughout the rainy season (November through March).

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The soil profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and
miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Therefore, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information,
production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area,
they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

The descriptions, names, and delineations of the soils in this survey area do not fully agree with those of the soils in the survey of Glenn County (published in 1968) or in the survey of Yolo County (published in 1972). Differences are the result of soil reclamation, land leveling, and drainage; modifications in the series and map unit concepts; or variations in the intensity and scale of mapping or in the extent of the soils in the survey areas. Updating of the Glenn and Yolo surveys is needed.

Table 1.--Temperature and Precipitation
(Recorded in the period 1961 to 1990 at Colusa and at East Park Reservoir)

Station: Colusa 2 SSW

January-----\|	53.8	36.4	45.1	70	23	172	3.15	0.92	4.95	5	0.0
February----\|	61.0	39.9	50.5	75	28	297	2.54	0.72	4.16	5	0.0
March-----\|	65.9	41.9	53.9	82	28	430	2.18	0.98	3.21	5	0.0
April-----\|	73.4	44.5	59.0	91	32	570	0.88	0.16	1.44	2	0.0
May------\|	82.4	51.4	66.9	99	38	834	0.32	0.08	0.80	0	0.0
June-----\|	90.4	56.4	73.4	106	45	1,001	0.22	0.07	0.59	0	0.0
July-----1	95.5	58.6	77.1	108	48	1,149	0.04	0.01	0.27	0	0.0
August-----\|	94.1	57.3	75.7	107	47	1,105	0.07	0.05	0.43	0	0.0
September---\|	88.8	53.7	71.2	103	42	937	0.34	0.07	0.83	0	0.0
October-----\|	78.6	47.6	63.1	96	35	715	1.04	0.28	1.92	2	0.0
November---\|	63.2	41.1	52.2	80	27	365	2.51	0.67 \|	3.98	5	0.0
December---\|	53.8	36.6	45.2	69	22	178	2.47	1.27	3.68	5	0.1
Yearly:											
Average---	75.1	47.1	61.1	---	---	---	---	-	---	---	---
Extreme---\|	113	15	---	109	21	---	---	--- \|	---\|	---	---
Total----\|	---	---	---	---	---	7,752	15.76	10.65	20.04	29	0.1

Station: East Park Reservoir

January----	54.5	31.5	43.0	71	18	130	4.50	1.77	6.80	7	0.0
February----\|	58.6	35.0	46.8	74	22	198	3.48	0.87	5.89	5	0.0
March-----\|	61.2	37.2	49.2	79	24	290	2.44	0.73	3.95	5	0.0
April-----\|	68.1	40.5	54.3	87	28	429	1.13	0.37	1.92	3	0.0
May------\|	77.7	47.0	62.4	97	32	693	0.39	0.11	0.78 \|	1	0.0
June------\|	86.7	54.3	70.5	105	40	893	0.27	0.10	0.731	0	0.0
July-------\|	93.7	58.8	76.2	107	47	1,117	0.04	0.06	0.32	0	0.0
August-----\|	92.1	57.0	74.5	106	46	1,070	0.15	0.07	0.51	0	0.0
September---\|	87.2	52.2	69.7	104	40	890	0.26	0.09	0.63 \|	0	0.0
October-----\|	76.9	45.2	61.0	96	31	665	1.10	0.28	2.12	2	0.0
November---\|	64.0	37.3	50.6	83	23	320	2.62	0.58	4.34	4	0.0
December---\|	56.1	32.4	44.3	72	19	155	3.79	1.28	6.031	6	0.0
Yearly:											
Average---	73.1	44.0	58.6	---	---	---	---	---	---	---	---
Extreme---\|	113	10		109	16	---	--	--	--- \|	---	---
Total----\|	-	-	-	---	---	6,851	20.18	10.62	26.93	33	0.0

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

| Table 2.--Freeze Dates in Spring and Fall |
| :--- | :--- | :--- | :--- |

Table 3.--Growing Season
(Recorded for the period 1961-90 at Colusa)

Probability	Daily minimum temperature during growing season		
	\mid \|		
	Higher	Higher than	Higher
	than		than
	$24^{\circ} \mathrm{F}$	$28^{\circ} \mathrm{F}$	$32{ }^{\circ} \mathrm{F}$
	Days	Days	Days
9 years in 10	338	258	208
8 years in 10	>365	276	228
5 years in 10	>365	312	266
2 years in 10	>365	>365	304
1 year in 10	>365	>365	324

General Soil Map Units

The general soil map in this publication shows broad areas that have a distinctive pattern of soils, relief, and drainage. Each association on the general soil map is a unique natural landscape. Typically, it consists of one or more major soils or miscellaneous areas and some minor soils or miscellaneous areas. It is named for the major soils or miscellaneous areas. The components of one association can occur in another but in a different pattern.

The general soil map can be used to compare the suitability of large areas for general land uses. Areas of suitable soils can be identified on the map. Likewise, areas where the soils are not suitable can be identified.

Because of its small scale, the map is not suitable for planning the management of a farm or field or for selecting a site for a road or building or other structure. The soils in any one association differ from place to place in slope, depth, drainage, and other characteristics that affect management.

1. Vina-Moonbend-Scribner Association

Very deep, nearly level, moderately well drained, well drained, and poorly drained soils formed in alluvium derived from mixed rock sources; on flood plains along the Sacramento River (figure 4) and west-side streams

Setting

Landform: Flood plains
Slope range: 0 to 2 percent

Composition

Extent of the association: 12 percent of the survey area
Extent of the soils in the association:
Vina soils-32 percent Moonbend soils-27 percent Scribner soils-27 percent Minor components-14 percent

Soil Properties and Qualities

Vina

Depth class: Very deep
Drainage class: Well drained
Landform: Flood plains

Parent material: Alluvium

Texture of the surface layer: Loam
Slope: Nearly level

Moonbend

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Flood plains
Parent material: Alluvium
Texture of the surface layer: Silt loam
Slope: Nearly level

Scribner

Depth class: Very deep
Drainage class: Poorly drained
Landform: Flood plains
Parent material: Alluvium
Texture of the surface layer: Silt loam
Slope: Nearly level

Minor Components

- Columbia, Colusa, Grandbend, Holillipah, and

Tujunga soils and Riverwash on flood plains
Use and Management
Major Use: Irrigated crops
Management concerns: Water table and flooding Management measures: Drainage systems and floodprotection structures

2. Willows-Clear Lake-Capay Association

Very deep, nearly level, poorly drained and moderately well drained soils formed in fine textured alluvium derived from mixed rock sources; in the Colusa Basin and Butte Sink
Setting
Landform: Basins
Slope range: 0 to 2 percent
Composition
Extent of the association: 26 percent of the survey
area

Landform: Basins
Slope range: 0 to 2 percent

Composition

 areaExtent of the soils in the association:
Willows soils-64 percent
Clear Lake soils-12 percent
Capay soils-12 percent
Minor soils-12 percent

Soil Properties and Qualities

Willows

Depth class: Very deep
Drainage class: Poorly drained
Landform: Basins
Parent material: Alluvium
Texture of the surface layer: Silty clay
Slope: Nearly level

Clear Lake

Depth class: Very deep
Drainage class: Poorly drained
Landform: Basins
Parent material: Alluvium
Texture of the surface layer: Clay
Slope: Nearly level

Capay

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Basins
Parent material: Alluvium
Texture of the surface layer: Clay loam
Slope: Nearly level

Minor Soils

- Alcapay and Myers soils in basins
- Corbiere soils on the rims of basins

Use and Management

Major Use: Irrigated crops
Management concerns: Water table, flooding, and fine textures
Management measures: Drainage systems, floodprotection structures, and cropping and tillage operations that are adapted to the fine textures

3. Westfan-Mallard Association

Very deep, nearly level, well drained and somewhat poorly drained soils formed in alluvium derived from mixed rock sources; on alluvial fans on the west side of the Sacramento Valley

Setting

Landform: Alluvial fans
Slope range: 0 to 2 percent

Composition

Extent of the association: 7 percent of the survey area
Extent of the soils in the association:
Westfan soils-64 percent
Mallard soils- 34 percent
Minor soils-2 percent

Soil Properties and Qualities

Westfan

Depth class: Very deep
Drainage class: Well drained
Landform: Alluvial fans
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level

Mallard

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Alluvial fans
Parent material: Alluvium
Texture of the surface layer: Clay loam
Slope: Nearly level

Minor Soils

- Hustabel soils on alluvial fans

Use and Management

Major Use: Irrigated crops
Management concerns: Water table, flooding, and restricted permeability
Management measures: Drainage systems, floodprotection structures, and irrigation water management that prevents a perched water table

4. Hillgate-Arbuckle-Corval-Corning Association

Very deep, nearly level to moderately sloping, well drained soils formed in alluvium derived from mixed rock sources; on terraces, flood plains, and alluvial fans along the west side of the Sacramento Valley

Setting

Landform:Terraces
Slope range: 0 to 9 percent

Composition

Extent of the association: 9 percent of the survey area Extent of the soils in the association:

Hillgate soils- 34 percent
Arbuckle soils-29 percent

Corval soils-18 percent
 Corning soils- 14 percent
 Minor soils-5 percent
 Soil Properties and Qualities

Hillgate

Depth class: Very deep
Drainage class: Well drained
Landform: Terraces
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to moderately sloping

Arbuckle

Depth class:Very deep
Drainage class: Well drained
Landform:Terraces
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to gently sloping

Corval

Depth class: Very deep
Drainage class: Well drained
Landform: Flood plains and alluvial fans
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to gently sloping

Corning

Depth class: Very deep
Drainage class: Well drained
Landform: Terraces
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to gently sloping

Minor Soils

- Arand soils on flood plains and alluvial fans

Use and Management

Major Use: Irrigated crops
Management concerns: Restricted permeability
Management measures: Irrigation water management that prevents a perched water table

5. Altamont-Ayar-Sehorn Association

Very deep and moderately deep, gently sloping to steep, well drained soils formed in residuum derived from sandstone, siltstone, and shale; on foothills of the Coast Range

Setting

Landform: Hills
Slope range: 5 to 50 percent

Composition

Extent of the association: 5 percent of the survey area
Extent of the soils in the association:
Altamont soils-63 percent
Ayar soils-25 percent
Sehorn soils-5 percent
Minor soils-7 percent

Soil Properties and Qualities

Altamont

Depth class: Very deep
Drainage class: Well drained
Landform: Hills
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Silty clay
Slope: Moderately sloping to steep

Ayar

Depth class: Very deep
Drainage class: Well drained
Landform: Hills
Parent material: Residuum derived from sandstone, siltstone, and shale
Texture of the surface layer: Clay
Slope: Gentlly sloping to steep
Sehorn
Depth class: Moderately deep
Drainage class: Well drained
Landform: Hills
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Silty clay
Slope: Strongly sloping to steep

Minor Soils

- Balcom soils on hills

Use and Management

Major Use: Livestock grazing
Management concerns: Slow permeability, fine textures, and slope
Management measures: Prescribed grazing management, which helps to control erosion and compaction and helps to maintain riparian areas

6. Millsholm-Goldeagle-Contra Costa Association

Deep, moderately deep, and shallow, gently sloping to very steep, well drained soils formed in residuum derived from sandstone, siltstone, and shale; on foothills of the Coast Range

Setting

Landform: Hills

Slope range: 3 to 75 percent

Composition

Extent of the association: 21 percent of the survey area
Extent of the soils in the association:
Millsholm soils-56 percent
Goldeagle soils-19 percent
Contra Costa soils-15 percent
Minor soils-10 percent

Soil Properties and Qualities

Millsholm

Depth class: Shallow
Drainage class: Well drained
Landform: Hills
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Loam
Slope: Strongly sloping to very steep

Goldeagle

Depth class: Deep
Drainage class: Well drained
Landform: Foothills
Parent material: Residuum derived from sandstone, siltstone, and shale
Texture of the surface layer: Sandy clay loam
Slope: Moderately steep to very steep

Contra Costa

Depth class: Moderately deep
Drainage class: Well drained
Landform: Hills
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Loam
Slope: Gently sloping to very steep

Minor Soils

- Positas soils on dissected terraces
- Skyhigh and Sleeper soils on hills
- Livermore soils on alluvial fans
- Butte soils on mountains

Use and Management

Major Use: Livestock grazing
Management concerns: Slow permeability, shallow soil depth, and slope
Management measures: Prescribed grazing management, which helps to control erosion and compaction and helps to maintain riparian areas

7. Capay-Hillgate-Saltcanyon Association

Very deep, nearly level to moderately sloping, moderately well drained and well drained soils formed in alluvium derived from mixed rock sources; on alluvial fans and terraces and in basins in Coast Range valleys

Setting

Landform: Alluvial fans and basins Slope range: 0 to 9 percent

Composition

Extent of the association: 3 percent of the survey area Extent of the soils in the association:

Capay soils-44 percent
Hillgate soils-24 percent
Saltcanyon soils-12 percent
Minor soils-20 percent

Soil Properties and Qualities

Capay

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Basins
Parent material: Alluvium
Texture of the surface layer: Clay
Slope: Nearly level to moderately sloping

Hillgate

Depth class: Very deep
Drainage class: Well drained
Landform: Terraces
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to moderately sloping

Saltcanyon

Depth class: Very deep
Drainage class: Well drained
Landform: Alluvial fans
Parent material: Alluvium
Texture of the surface layer: Loam
Slope: Nearly level to moderately sloping

Minor Soils

- Arand and Mallard soils on alluvial fans
- Arbuckle soils on terraces
- Clear Lake soils in basins
- Maywood soils on flood plains

Use and Management

Major Use: Livestock grazing
Management concerns: Slow permeability and fine textures
Management measures: Prescribed grazing management, which helps to control compaction and streambank erosion

8. Venado-Leesville Association

Very deep, nearly level to gently sloping, poorly drained and well drained soils formed in alluvium derived from peridotite rock sources; on alluvial fans and in basins in Bear Valley (figure 5) on the Coast Range

Setting

Landform: Alluvial fans and basins
Slope range: 0 to 5 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Venado soils-47 percent
Leesville soils-44 percent
Minor soils-9 percent

Soil Properties and Qualities

Venado

Depth class: Very deep
Drainage class: Poorly drained
Landform: Basins
Parent material: Alluvium derived from peridotite
Texture of the surface layer: Clay
Slope: Nearly level

Leesville

Depth class: Very deep
Drainage class: Well drained
Landform: Alluvial fans
Parent material: Alluvium derived from peridotite
Texture of the surface layer: Clay loam
Slope: Nearly level to gently sloping
Minor Soils

- Eastpark soils on terraces
- Bearvalley soils on alluvial fans

Use and Management

Major Use: Livestock grazing
Management concerns: Slow permeability, fine textures, poor drainage, and streambank erosion
Management measures: Prescribed grazing management, which helps to control streambank erosion and compaction

9. Okiota-Henneke Association

Moderately deep and shallow, strongly sloping to very steep, well drained soils formed in residuum derived from peridotite rock; on Coast Range mountains

Setting

Landform: Mountains Slope range: 15 to 75 percent

Composition

Extent of the association: 6 percent of the survey area Extent of the soils in the association:

Okiota and Henneke soils-99 percent
Minor soils-1 percent

Soil Properties and Qualities

Okiota

Depth class: Moderately deep
Drainage class: Well drained
Landform: Mountains
Parent material: Residuum derived from peridotite
Texture of the surface layer: Loam
Slope: Strongly sloping to very steep

Henneke

Depth class: Shallow
Drainage class: Well drained
Landform: Mountains
Parent material: Alluvium derived from peridotite
Texture of the surface layer: Sandy loam
Slope: Strongly sloping to very steep

Minor Soils

- Haploxererts on mountains

Use and Management

Major Uses: Wildlife habitat, recreation, and watershed
Management concerns: Slow permeability, shallow soil depth, and slope
Management measures: Erosion-control structures on sites for roads

10. Maymen-Etsel Association

Shallow, moderately steep and steep, well drained soils formed in residuum derived from sandstone and shale rock sources; on Coast Range mountains (figure 6)

Setting

Landform: Mountains
Slope range: 30 to 50 percent

Composition

Extent of the association: 4 percent of the survey area
Extent of the soils in the association:
Maymen and Etsel soils-79 percent Minor soils-21 percent

Soil Properties and Qualities

Maymen

Depth class: Shallow
Drainage class: Somewhat excessively drained
Landform: Mountains
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Sandy loam
Slope: Moderately steep and steep

Etsel

Depth class: Shallow
Drainage class: Somewhat excessively drained
Landform: Mountains
Parent material: Residuum derived from sandstone and shale
Texture of the surface layer: Gravelly sandy loam Slope: Moderately steep and steep

Minor Soils

- Guenoc and Stonyford soils on mountains

Use and Management

Major Uses: Wildlife habitat, recreation, and watershed
Management concerns: Shallow soil depth and slope Management measures: Erosion-control structures on sites for roads

11. Neuns-Goulding Association

Moderately deep and shallow, moderately steep to very steep, well drained soils formed in residuum derived from metamorphic rocks; on the Coast Range mountains

Setting

Landform: Mountains

Slope range: 30 to 75 percent

Composition

Extent of the association: 5 percent of the survey area Extent of the soils in the association:

Neuns and Goulding soils-90 percent
Minor soils-10 percent

Soil Properties and Qualities

Neuns

Depth class: Moderately deep
Drainage class: Well drained
Landform: Mountains
Parent material: Residuum derived from schist
Texture of the surface layer: Very gravelly loam
Slope: Moderately steep to very steep

Goulding

Depth class: Shallow
Drainage class: Well drained
Landform: Mountains
Parent material: Residuum derived from schist
Texture of the surface layer: Gravelly loam
Slope: Moderately steep to very steep
Minor Soils

- Bamtush, Fouts, Squawrock, and Yorkville soils on mountains
- Endoaquolls in mountain valleys

Use and Management

Major Uses: Wildlife habitat, recreation, watershed, and timber production

Management concerns: Shallow soil depth and slope
Management measures: Erosion-control structures on sites for roads, skid trails, and log landings

12. Freezeout-Yollabolly Association

Moderately deep and shallow, moderately steep and steep, well drained and excessively drained, frigid soils formed in residuum derived from metamorphic rocks; on the higher mountains of the Coast Range from Goat Rock to Snow Mountain (figure 7)

Setting

Landform: Mountains
Slope range: 30 to 50 percent

Composition

Extent of the association: 1 percent of the survey area Extent of the soils in the association:

Freezeout and Yollabolly soils-100 percent Minor soils-0 percent

Soil Properties and Qualities

Freezeout

Depth class: Moderately deep
Drainage class: Well drained
Landform: Mountains
Parent material: Residuum derived from schist
Texture of the surface layer: Very gravelly sandy loam Slope: Moderately steep and steep

Yollabolly

Depth class: Shallow
Drainage class: Excessively drained
Landform: Mountains
Parent material: Residuum derived from schist
Texture of the surface layer: Very gravelly loam Slope: Moderately steep and steep

Use and Management

Major Uses: Wildlife habitat, recreation, watershed, and timber production

Management concerns: Shallow soil depth and slope
Management measures: Erosion-control structures on sites for roads, skid trails, and log landings

Figure 4.-The Sacramento River, north of Colusa. Riverwash is in the foreground.

Figure 5.-Wild flowers on Venado soils in the Bear Valley.

Figure 6.-A chamise-covered area of the Maymen-Etsel association.

Figure 7.-An area of Snow Mountain in the Mendocino National Forest.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses. More information about each map unit is given under the heading "Use and Management of the Soils."

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Some minor soil components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. They may be mentioned in the map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas are identified by a special symbol on the maps. A few minor soil components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the
data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans, but if intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Willows silty clay, 0 to 1 percent slopes, frequently flooded, is a phase of the Willows series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes or associations.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Altamont-Sehorn complex, 15 to 30 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or
miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Freezeout-Yollabolly association, 50 to 75 percent slopes, is an example.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Riverwash is an example.

Table 4 gives the acreage and proportionate extent
of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The tables in the section "Soil Properties" give information about the major soils in the detailed map units, including data on the physical and chemical properties of the soil horizons. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

Table 4.--Acreage and Proportionate Extent of the Soils

	Soil name	Acres	Percent
$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$			
100	\|Capay clay loam, 0 to 1 percent slopes, occasionally flooded-	556	*
101	\|Capay silty clay, 0 to 2 percent slopes, frequently flooded-	65	*
102	\|Capay clay loam, 0 to 1 percent slopes-	25,805	3.5
103	\|Capay clay loam, 0 to 1 percent slopes, frequently flooded	265	*
104	\|Willows silty clay, 0 to 1 percent slopes, frequently flooded	32,630	4.4
105	\|Willows silty clay, 0 to 1 percent slopes, occasionally flooded	53,615	7.3
106	\|Willows silty clay, 0 to 1 percent slopes-	35,116	4.8
107	\|Scribner silt loam, 0 to 1 percent slopes, occasionally flooded-	2,858	0.4
108	\|Scribner silt loam, 0 to 1 percent slopes	19,757	2.7
109	\|Scribner silt loam, 0 to 1 percent slopes, frequently flooded	860	0.1
110	\|Hustabel sandy loam, 0 to 1 percent slopes	1,414	0.2
112	\|Westfan loam, 0 to 2 percent slopes	24,013	3.3
113	\mid Westfan loam, sodic, 0 to 2 percent slopes	310	*
114	\|Westfan clay loam, 0 to 1 percent slopes	1,257	0.2
115	\mid Clear Lake clay, 0 to 1 percent slopes, occasionally flooded	18,810	2.5
116		1,518	0.2
117	\|Clear Lake clay, calcareous, 0 to 1 percent slopes, frequently flooded---	656	*
118	\mid Clear Lake clay, 0 to 2 percent slopes, frequently flooded-	1,447	0.2
124	\mid Moonbend silt loam, 0 to 2 percent slopes, occasionally flooded--	6,843	0.9
125	\|Moonbend silt loam, 0 to 2 percent slopes-	13,986	1.9
126	\|Moonbend silt loam, 0 to 2 percent slopes, frequently flooded	2,967	0.4
127	\|Mallard clay loam, 0 to 1 percent slopes	14,734	2.0
128	\|Mallard loam, 0 to 1 percent slopes	2,858	0.4
129	\|Mallard clay loam, 0 to 1 percent slopes, occasionally flooded	589	*
130	\|Corbiere silt loam, 0 to 1 percent slopes	3,153	0.4
131	\|Corbiere silt loam, 0 to 2 percent slopes, frequently flooded	3,749	0.5
133	\|Corbiere silt loam, 0 to 2 percent slopes, occasionally flooded	3,768	0.5
136	\|Colusa loam, 0 to 2 percent slopes	2,599	0.4
141	\mid Myers clay, 0 to 2 percent slopes-	4,163	0.6
144	\| Hillgate clay loam, 0 to 2 percent slope	15,093	2.0
145	\mid Hillgate loam, 0 to 2 percent slopes	4,611	0.6
147	\|Hillgate loam, 1 to 5 percent slopes-	2,250	0.3
150	\|Arbuckle sandy loam, 1 to 5 percent slopes	7,228	1.0
151	\|Arbuckle-Hillgate complex, 1 to 5 percent slope	8,713	1.2
152	\|Arbuckle gravelly loam, 1 to 5 percent slopes	1,029	0.1
155	\|Alcapay clay, 0 to 1 percent slopes	8,954	1.2
160	\mid Grandbend loam, 0 to 2 percent slopes	6,522	0.9
170	\mid Vina loam, 0 to 2 percent slopes, frequently flooded	4,320	0.6
171	\mid Vina loam, 0 to 2 percent slopes-	19,422	2.6
172	\|Vina fine sandy loam, 0 to 2 percent slopes, frequently flooded	2,000	0.3
174	\mid Vina loam, 0 to 2 percent slopes, occasionally flooded-	1,686	0.2
175	\mid Tujunga loam, overwash, 0 to 2 percent slopes, frequently flooded	773	0.1
176	\|Columbia fine sandy loam, 0 to 2 percent slopes, frequently flooded-	52	*
177	\|Holillipah loamy sand, channeled, 0 to 2 percent slopes	17	*
185	\|Riverwash	2,036	0.3
187	\|Westfan loam, 0 to 2 percent slopes, occasionally flooded-	427	*
188	\|Westfan loam, clay substratum, 0 to 2 percent slopes-	2,252	0.3
189	\mid Arand very gravelly sandy loam, 0 to 2 percent slopes	3,192	0.4
190	\mid Arand very gravelly loam, 0 to 2 percent slopes-	918	0.1
193	\|Westfan gravelly loam, 0 to 2 percent slopes-	6,318	0.9

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

	Soil name	Acres	Percent	
$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$				
	1			
200	\|Clear Lake clay, 0 to 2 percent slopes, occasionally flooded-------------		1,069	0.1
204	\|Capay clay, 0 to 3 percent slopes, occasionally flooded-----------------		881	0.1
205	\|Capay clay, 0 to 3 percent slopes---	4,603	0.6	
206	\|Capay clay, 5 to 9 percent slopes---------------------------------------		5,317	0.7
210	\|Corval loam, 0 to 3 percent slopes--		6,469	0.9
211	\|Corval clay loam, 0 to 3 percent slop	4,997	0.7	
212	\|Ayar clay, 5 to 15 percent slopes---------------------------------------		4,151	0.6
213	\|Ayar clay, 15 to 30 percent slopes--------------------------------------		5,547	0.8
215	\|Altamont-Sehorn complex, 15 to 30 percent slopes-------------------------		5,354	0.7
216	\|Altamont-Sehorn complex, 9 to 15 percent slopes--------------------------		3,819	0.5
218	\|Sehorn-Altamont complex, 30 to 50 percent slopes-------------------------		12,171	1.6
220	\|Altamont silty clay, 5 to 9 percent slopes------------------------------		2,920	0.4
221	\|Altamont silty clay, 9 to 15 percent slopes------------------------------		667	*
230	\|Corning clay loam, 1 to 5 percent slopes----------------------------------		9,176	1.2
232	\|Maywood gravelly loam, 0 to 2 percent slopes, occasionally flooded-------		71	*
233	\|Eastpark clay loam, 0 to 2 percent slopes--------------------------------	186		
241	\|Contra Costa-Altamont association, 30 to 50 percent slopes---------------		706	*
253	\mid Millsholm-Altamont-Rock outcrop complex, 5 to 15 percent slopes----------\|	3,370	0.5	
255	\mid Millsholm-Rock outcrop complex, 9 to 30 percent slopes------------------\|	2,537	0.3	
257		1,240	0.2	
261		128	*	
270	\|Balcom-Ayar complex, 15 to 30 percent slopes----------------------------		875	0.1
271	\|Balcom-Ayar complex, 30 to 50 percent slopes-----------------------------		1,797	0.2
275	\|Goldeagle-Positas-Balcom complex, 30 to 75 percent slopes---------------		30,257	4.1
276	\|Positas gravelly sandy loam, 30 to 50 percent slopes---------------------		3,729	0.5
280	\|Skyhigh-Millsholm complex, 15 to 50 percent slopes----------------------		4,932	0.7
300	\|Contra Costa-Millsholm complex, 50 to 75 percent slopes------------------		14,462	2.0
305	\|Contra Costa loam, 50 to 75 percent slopes--------------------------------		7,389	1.0
311	\|Contra Costa loam, 9 to 15 percent slopes--------------------------------		1,257	0.2
312	\|Saltcanyon loam, 1 to 5 percent slopes------------------------------------	2,266	0.3	
313	\|Saltcanyon loam, 5 to 9 percent slopes---------------------------------1		731	*
315	\|Mallard clay loam, 2 to 5 percent slopes----------------------------------		1,346	0.2
316	\|Hillgate loam, 5 to 9 percent slopes------------------------------------		5,918	0.8
320	\|Millsholm loam, 5 to 30 percent slopes-----------------------------------		4,889	0.7
329	\|Sehorn-Millsholm-Altamont complex, 15 to 30 percent slopes---------------		233	*
330	\mid Millsholm-Contra Costa complex, 15 to 30 percent slopes-----------------\|	2,741	0.4	
331	\|Sehorn-Millsholm-Rock outcrop complex, 30 to 50 percent slopes-----------		1,608	0.2
332	\|Millsholm-Rock outcrop association, 30 to 75 percent slopes--------------		16,660	2.3
334		54,890	7.4	
337		2,701	0.4	
345	\|Skyhigh-Sleeper-Millsholm association, 15 to 30 percent slopes-----------		2,518	0.3
346	\|Skyhigh-Millsholm-Sleeper association, 30 to 50 percent slopes-----------		545	*
347	\|Boar-Sleeper complex, 15 to 30 percent slopes--------------------------		322	*
348	\|Boar-Sleeper complex, 30 to 50 percent slopes----------------------------		728	*
350	\|Haploxererts, 30 to 50 percent slopes----------------------------------		354	*
355	\|Venado clay, 0 to 2 percent slopes---------------------------------------	3,966	0.5	
360	\|Bearvalley gravelly sandy loam, 2 to 5 percent slopes-------------------		581	*
365	\|Leesville clay loam, 2 to 5 percent slopes-------------------------------	3,561	0.5	
366	\|Leesville clay loam, 0 to 2 percent slopes--------------------------------		145	*
370	\|Livermore very gravelly loam, 5 to 9 percent slopes--------------------		827	0.1
371	\|Buttes-Millsholm complex, 30 to 50 percent slopes------------------------		1,559	0.2
519	\|Stonyford-Guenoc complex, 5 to 15 percent slopes------------------------		206	*
520	\|Stonyford-Guenoc complex, 15 to 30 percent slopes------------------------		1,971	0.3
521	\|Stonyford-Guenoc complex, 30 to 50 percent slopes----------------------		3,233	0.4
524	\|Arand-Riverwash complex, 0 to 2 percent slopes, frequently flooded-------		664	*
526	\|Etsel-Maymen-Marpa association, 30 to 50 percent slopes-----------------		17,783	2.4
527	\|Maymen-Etsel-Speaker association, 30 to 50 percent slopes----------------		76	*
528	\|Maymen-Etsel-Snook complex, 30 to 75 percent slopes---------------------		1,939	0.3
529	\|Maymen-Etsel-Mayacama complex, 30 to 75 percent slopes------------------		804	0.1
542	\|Okiota-Dubakella-Henneke complex, 15 to 50 percent slopes----------------		793	0.1
545	\|Henneke-Montara-Rock outcrop complex, 15 to 50 percent slopes------------		20,975	2.8
548	\|Henneke-Okiota complex, 30 to 50 percent slopes-------------------------		7,520	1.0

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

	Soil name	Acres	Percent	
Map symbol				
549	\|Henneke-Okiota complex, 50 to 75 percent slopes-------------------------		14,344	1.9
557	Neuns-Bamtush-Speaker complex, 30 to 50 percent slope	582	*	
564	\|Fouts-Yorkville-Squawrock association, 15 to 50 percent slopes	973	0.1	
570	\|Endoaquolls, 0 to 2 percent slopes, frequently ponded-	58	*	
590	Neuns-Marpa-Goulding complex, 30 to 50 percent slopes	12,441	1.7	
591	Neuns-Sheetiron-Goulding complex, 30 to 50 percent slopes	881	0.1	
592	Neuns-Goulding-Sheetiron complex, 50 to 75 percent slopes-	52	*	
596	\|Yollabolly-Rock outcrop-Freezeout complex, 50 to 75 percent slopes-------		557	*
597	Yollabolly-Freezeout complex, 30 to 50 percent slopes	2,056	0.3	
599	\|Freezeout-Yollabolly complex, 30 to 50 percent slopes	2,919	0.4	
600	Freezeout-Yollabolly association, 50 to 75 percent slopes	457	*	
610	Neuns-Bamtush-Goulding association, 30 to 50 percent slope	16,244	2.2	
650	Bamtush-Marpa complex, 15 to 30 percent slopes	626	*	
651	\|Bamtush-Marpa complex, 30 to 50 percent slopes	1,789	0.2	
652	\|Water---	637	*	
	Total--	737,920	100.0	

* Less than 0.1 percent.

A typical profile and range in characteristics of the soils identified in the names of the detailed map units are described in the section "Classification of the Soils."

100-Capay clay loam, 0 to 1 percent slopes, occasionally flooded

Map Unit Setting

General location: West side of the Colusa Basin, near the towns of Williams and Maxwell
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 35 to 45 feet (12 to 15 meters)
Mean annual precipitation: 14 to 16 inches (355 to 406 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days
Composition
Capay clay loam, occasionally flooded-90 percent Minor components-10 percent

Major Component Description Capay clay loam, occasionally flooded

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.9 inches (high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. The soil was rarely or occasionally flooded under natural conditions. There are no soil redoximorphic features within a depth of 36 inches.

Land capability classification

Irrigated: 2w-5
Nonirrigated: 4w-5

Typical profile

Ap-0 to 15 inches; clay loam
A-15 to 33 inches; clay loam

Bss1-33 to 39 inches; clay
Bss2-39 to 46 inches; clay
Bssk-46 to 64 inches; clay

Minor Components

Capay clay, occasionally flooded, and similar soils
Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels
Willows silty clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Arbuckle sandy loam, occasionally flooded, and similar soils

Composition: 0 to 1 percent

Slope: 0 to 1 percent
Geomorphic setting:Terraces

Westfan loam, occasionally flooded, and similar

 soilsComposition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

101-Capay silty clay, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

General location: Along Butte Creek, in the Sutter Basins
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 145 to 180 feet (45 to 55 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)

Frost-free period: 225 to 250 days

Composition

Capay silty clay, frequently flooded-90 percent Minor components-10 percent

Major Component Description

Capay silty clay, frequently flooded
Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.3 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Flooding is restricted in other areas, resulting in frequent flooding in this map unit. Under natural conditions, the Capay soil in this map unit would be flooded less frequently.

Land capability classification

Irrigated: 4w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 8 inches; silty clay
Bss1-8 to 21 inches; silty clay
Bss2-21 to 36 inches; silty clay
Ck1-36 to 48 inches; clay loam
Ck2—48 to 58 inches; clay loam

Minor Components

Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent

Geomorphic setting: Basin floors

Vina loam, frequently flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated cropland
For information about management, see the "Use and Management" section of this publication.

102-Capay clay loam, 0 to 1 percent slopes

Map Unit Setting

General location: On the west side of the Colusa Basin, near the towns of Williams and Maxwell
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 25 to 140 feet (9 to 43 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Capay clay loam-90 percent
Minor components-10 percent

Major Component Description

Capay clay loam

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.9 inches (high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained
Altered hydrology: Water tables have been lowered by drainage ditches used in the production of rice. Most areas were rarely or occasionally flooded under natural conditions. No redoximorphic features are within a depth of 36 inches.

Land capability classification

Irrigated: 2s-5
Nonirrigated: 4s-5

Typical profile

Ap-0 to 15 inches; clay loam
A-15 to 33 inches; clay loam
Bss1-33 to 39 inches; clay
Bss2-39 to 46 inches; clay
Bssk-46 to 64 inches; clay

Minor Components

Capay clay and similar soils

Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Capay clay loam, occasionally flooded, and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Westfan loam and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Willows silty clay and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

103-Capay clay loam, 0 to 1 percent slopes, frequently flooded

Map Unit Setting

General location: Small areas within the Colusa National Wildlife Refuge
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 35 to 45 feet (11 to 15 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Capay clay loam, frequently flooded-90 percent
Minor components-10 percent

Major Component Description

Capay clay loam, frequently flooded

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.9 inches (high)

Hydrologic properties

Present flooding: Frequent

Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Flooding is restricted in other areas, resulting in frequent flooding in this map unit. Under natural conditions, the Capay soil in this map unit would be flooded less frequently.

Land capability classification

Irrigated: 4w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 15 inches; clay loam
A- 15 to 33 inches; clay loam
Bss1-33 to 39 inches; clay
Bss2-39 to 46 inches; clay
Bssk-46 to 64 inches; clay

Minor Components

Capay clay, frequently flooded, and similar soils
Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Capay clay loam, occasionally flooded, and similar soils
Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels
Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

104-Willows silty clay, 0 to 1 percent slopes, frequently flooded

Map Unit Setting

General location: The lowest areas of the Colusa Basin and Butte Sink
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 35 to 110 feet (12 to 35 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Willows silty clay, frequently flooded-90 percent

Minor components-10 percent

Major Component Description

Willows silty clay, frequently flooded

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Very slow
Salinity: Saline within a depth of 40 inches
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Accumulations of salts at the surface may have been removed through reclamation efforts or ponding for rice production. The soil is frequently flooded for long periods.

Land capability classification

Irrigated: 4w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 5 inches; silty clay
Ap2-5 to 13 inches; silty clay
Bw-13 to 20 inches; silty clay
Bssy1-20 to 39 inches; silty clay
Bssy2-39 to 51 inches; silty clay
Bssy3-51 to 59 inches; silty clay
Bssy4-59 to 72 inches; clay
Bssy5-72 to 80 inches; silty clay
Bkssy-80 to 87 inches; clay

Minor Components

Capay clay loam, frequently flooded, and similar soils

Composition: 0 to 5 percent
Slope: 0 to 1 percent

Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels
Willows silty clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Scribner silt loam, frequently flooded, and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

105-Willows silty clay, 0 to 1 percent slopes, occasionally flooded

Map Unit Setting

General location: In the Colusa Basin and Butte Sink MLRA: 17
Geomorphic setting: Basin floors
Elevation: 35 to 110 feet (12 to 35 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Willows silty clay, occasionally flooded-90 percent
Minor components-10 percent
Major Component Description
Willows silty clay, occasionally flooded
Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Low

Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Saline within a depth of 40 inches
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and have lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Accumulations of salts at the surface have been removed through reclamation efforts or ponding for rice production. The soil formed under saturated and frequently flooded conditions.

Land capability classification

Irrigated: 3w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 5 inches; silty clay
Ap2-5 to 13 inches; silty clay
Bw-13 to 20 inches; silty clay
Bssy1-20 to 39 inches; silty clay
Bssy2-39 to 51 inches; silty clay
Bssy3-51 to 59 inches; silty clay
Bssy4-59 to 72 inches; clay
Bssy5-72 to 80 inches; silty clay
Bkssy-80 to 87 inches; clay

Minor Components

Capay clay loam, occasionally flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels
Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent

Geomorphic setting: Basin floors
Scribner silt loam, occasionally flooded, and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

106-Willows silty clay, 0 to 1 percent slopes

Map Unit Setting

General location: On the western margins of the Colusa Basin, near Williams and Maxwell
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 35 to 110 feet (12 to 35 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Willows silty clay-90 percent
Minor components-10 percent

Major Component Description

Willows silty clay

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Saline within a depth of 40 inches
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present

Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Accumulations of salts at the surface have been removed through reclamation or ponding for rice production. The soil formed under saturated and frequently flooded conditions.

Land capability classification

Irrigated: 3w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 5 inches; silty clay
Ap2-5 to 13 inches; silty clay Bw-13 to 20 inches; silty clay
Bssy1-20 to 39 inches; silty clay
Bssy2-39 to 51 inches; silty clay
Bssy3-51 to 59 inches; silty clay
Bssy4-59 to 72 inches; clay
Bssy5-72 to 80 inches; silty clay
Bkssy-80 to 87 inches; clay

Minor Components

Capay clay loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels
Willows silty clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Scribner silt loam and similar soils

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

107-Scribner silt loam, 0 to 1 percent slopes, occasionally flooded

Map Unit Setting

General location: The lowest areas on the flood plains along the Sacramento River
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 65 feet (15 to 20 meters)
Mean annual precipitation: 14 to 16 inches (355 to 406 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Scribner silt loam, occasionally flooded-80 percent
Minor components-20 percent

Major Component Description

Scribner silt loam, occasionally flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.0 inches (high)
Hydrologic properties
Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Under natural conditions, the soil was saturated near the surface and was frequently flooded.

Land capability classification

Irrigated: 3w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 6 inches; silt loam
A-6 to 12 inches; clay loam
Ab1-12 to 20 inches; clay loam
Ab2-20 to 33 inches; loam
Ab3-33 to 41 inches; loam
C-41 to 60 inches; loam

Minor Components

Vina loam, occasionally flooded, and similar soils

Composition: 0 to 10 percent

Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Corbiere silt loam, occasionally flooded, and

 similar soilsComposition: 0 to 8 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

108-Scribner silt loam, 0 to 1 percent slopes

Map Unit Setting

General location: On the flood plains along the Sacramento River
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 25 to 75 feet (9 to 23 meters)
Mean annual precipitation: 14 to 16 inches (355 to 406 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Scribner silt loam-80 percent
Minor components-20 percent
Major Component Description
Scribner silt loam
Geomorphic setting: Flood plains

Parent material: Alluvium

Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.0 inches (high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the
Sacramento River have changed flooding
frequency and duration and lowered water tables.
Drainage ditches used in the production of rice
have lowered water tables. Under natural conditions, the soil was saturated near the surface and was frequently flooded.

Land capability classification

Irrigated: 3w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 6 inches; silt loam
A-6 to 12 inches; clay loam
Ab1-12 to 20 inches; clay loam
Ab2-20 to 33 inches; loam
Ab3-33 to 41 inches; loam
C-41 to 60 inches; loam

Minor Components

Vina loam and similar soils
Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Corbiere silt loam and similar soils

Composition: 0 to 8 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

109—Scribner silt loam, 0 to 1 percent

 slopes, frequently flooded
Map Unit Setting

General location: West of the Sacramento River, near the Colusa Basin
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 25 to 35 feet (9 to 11 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Scribner silt loam, frequently flooded-80 percent Minor components-20 percent

Major Component Description

Scribner silt loam, frequently flooded
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.0 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. Under natural conditions, the soil was saturated near the surface and was frequently flooded.

Land capability classification

Irrigated: 4w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 6 inches; silt loam
A-6 to 12 inches; clay loam
Ab1-12 to 20 inches; clay loam
Ab2-20 to 33 inches; loam
Ab3-33 to 41 inches; loam
C-41 to 60 inches; loam

Minor Components

Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Vina loam, frequently flooded, and similar soils
Composition: 0 to 8 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

110-Hustabel sandy loam, 0 to 1 percent slopes

Map Unit Setting

General location: Along streams near Williams
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 95 to 150 feet (29 to 46 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Hustabel sandy loam-80 percent
Minor components-20 percent

Major Component Description

Hustabel sandy loam

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.3 inches (high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained

Land capability classification

Irrigated: 1
Nonirrigated: 4s

Typical profile

Ap1-0 to 3 inches; sandy loam
Ap2-3 to 13 inches; sandy loam
A1-13 to 20 inches; sandy loam
A2-20 to 31 inches; sandy loam
C1-31 to 35 inches; silt loam
C2—35 to 40 inches; loam
C3-40 to 48 inches; silty clay loam
2Ab1-48 to 52 inches; clay loam
2Ab2—52 to 61 inches; sandy clay loam

Minor Components

Westfan loam and similar soils
Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans
Westfan gravelly loam and similar soils
Composition: 0 to 7 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans
Mallard clay loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: The lower alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

112-Westfan loam, 0 to 2 percent slopes

Map Unit Setting

General location: Near Williams and Arbuckle
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 65 to 150 feet (20 to 46 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan loam-80 percent
Minor components-20 percent

Major Component Description

Westfan loam
Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.8 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 1

Nonirrigated: 4s
Typical profile
Ap1-0 to 4 inches; loam
Ap2-4 to 14 inches; loam
ABt-14 to 24 inches; loam
Btk-24 to 33 inches; fine sandy loam
Ck1-33 to 43 inches; fine sandy loam
Ck2- 43 to 56 inches; fine sandy loam
C1—56 to 69 inches; fine sandy loam
C2-69 to 93 inches; loam
2C-93 to 98 inches; silty clay loam

Minor Components

Mallard clay loam and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: The lower alluvial fans
Hustabel sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Westfan gravelly loam and similar soils

Composition: 0 to 4 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

113-Westfan loam, sodic, 0 to 2 percent slopes

Map Unit Setting

General location: Small area north of Maxwell
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 75 to 85 feet (23 to 27 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan loam, sodic-85 percent
Minor components-15 percent

Major Component Description

Westfan loam, sodic
Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.8 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-6
Nonirrigated: 4s-6
Typical profile
Ap1-0 to 4 inches; loam
Ap2-4 to 14 inches; loam
ABt-14 to 24 inches; loam
Btk-24 to 33 inches; fine sandy loam
Ck1-33 to 43 inches; fine sandy loam
Ck2-43 to 56 inches; fine sandy loam
C1-56 to 69 inches; fine sandy loam
C2-69 to 93 inches; loam
2C—93 to 98 inches; silty clay loam

Minor Components

Westfan loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Mallard clay loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: The lower alluvial fans

Willows silty clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

114-Westfan clay loam, 0 to 1 percent slopes

Map Unit Setting

General location: Small area west and south of Williams
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 110 to 130 feet (35 to 41 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan clay loam-80 percent
Minor components-20 percent

Major Component Description

Westfan clay loam

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 11.0 inches (very high)
Hydrologic properties
Present flooding: Rare

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 1
Nonirrigated:4s
Typical profile
Ap-0 to 25 inches; clay loam
Bt1-25 to 44 inches; clay loam
Bt2-44 to 60 inches; clay loam

Minor Components

Westfan loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Capay clay loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Mallard clay loam and similar soils
Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: The lower alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

115-Clear Lake clay, 0 to 1 percent slopes, occasionally flooded
\section*{Map Unit Setting}
General location: South end of the Colusa Basin
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 25 to 55 feet (8 to 17 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Clear Lake clay, occasionally flooded-90 percent Minor components-10 percent

Major Component Description

Clear Lake clay, occasionally flooded
Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables.

Land capability classification

Irrigated: 3w-5
Nonirrigated: 4w-5
Typical profile
Ap1-0 to 4 inches; clay
Ap2-4 to 10 inches; clay
Bss1-10 to 20 inches; clay
Bss2-20 to 34 inches; clay
Bss3-34 to 47 inches; clay
Bssk1-47 to 59 inches; clay
Bssk2-59 to 79 inches; clay

Minor Components

Capay clay loam, occasionally flooded, and similar soils

Composition: 0 to 3 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Corbiere silt loam, occasionally flooded, and similar soils

Composition: 0 to 3 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Clear Lake clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

116-Clear Lake clay, calcareous, 0 to 2 percent slopes, occasionally flooded

 Map Unit SettingGeneral location: East of the town of Arbuckle and west of the Colusa Basin Drain
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 25 to 45 feet (9 to 14 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Clear Lake clay, calcareous, occasionally flooded-90 percent
Minor components-10 percent
Major Component Description
Clear Lake clay, calcareous, occasionally flooded

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent

Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)
Hydrologic properties
Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables.

Land capability classification

Irrigated: 3w-5
Nonirrigated: 4w-5

Typical profile

Ap1-0 to 4 inches; clay
Ap2-4 to 10 inches; clay
Bss1-10 to 20 inches; clay
Bss2-20 to 34 inches; clay
Bss3-34 to 47 inches; clay
Bssk1-47 to 59 inches; clay
Bssk2-59 to 79 inches; clay

Minor Components

Willows silty clay, occasionally flooded, and similar soils

Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

117-Clear Lake clay, calcareous, 0 to 1 percent slopes, frequently flooded

Map Unit Setting

General location: East of Arbuckle and along the Colusa Basin Drain
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 25 to 45 feet (9 to 14 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Clear Lake clay, calcareous, frequently flooded-90 percent
Minor components-10 percent

Major Component Description

Clear Lake clay, calcareous, frequently

 floodedGeomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables.

Land capability classification
Irrigated: 4w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 4 inches; clay
Ap2-4 to 10 inches; clay
Bss1-10 to 20 inches; clay
Bss2-20 to 34 inches; clay
Bss3-34 to 47 inches; clay
Bssk1-47 to 59 inches; clay
Bssk2-59 to 79 inches; clay

Minor Components

Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Mallard clay loam, frequently flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting:The lower alluvial fans
Scribner silt loam, frequently flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

118-Clear Lake clay, 0 to 2 percent slopes, frequently flooded
 Map Unit Setting

General location: Small areas along the Colusa Basin Drain
MLRA: 17

Geomorphic setting: Basin floors
Elevation: 25 to 55 feet (8 to 17 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Clear Lake clay, frequently flooded-90 percent
Minor components-10 percent

Major Component Description

Clear Lake clay, frequently flooded
Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the
Sacramento River have changed flooding
frequency and duration and lowered water tables.
Drainage ditches used in the production of rice have lowered water tables.

Land capability classification

Irrigated:4w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 4 inches; clay
Ap2-4 to 10 inches; clay
Bss1-10 to 20 inches; clay
Bss2-20 to 34 inches; clay
Bss3-34 to 47 inches; clay
Bssk1-47 to 59 inches; clay
Bssk2-59 to 79 inches; clay

Minor Components

Willows silty clay, frequently flooded, and similar soils

Composition: 0 to 6 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Clear Lake clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

124-Moonbend silt loam, 0 to 2 percent slopes, occasionally flooded

Map Unit Setting

General location: Low areas along the Sacramento River
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 55 feet (14 to 17 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Moonbend silt loam, occasionally flooded-80 percent Minor components-20 percent

Major Component Description

Moonbend silt loam, occasionally flooded
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff rate: Very low

Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.5 inches (very high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: None noted
Natural drainage class: Moderately well drained
Altered hydrology: Flood-control structures on the
Sacramento River have changed flooding
frequency and duration.

Land capability classification

Irrigated:2w-2
Nonirrigated: 4w-2
Typical profile
Ap-0 to 8 inches; silt loam
Bw1-8 to 19 inches; silty clay loam
Bw2-19 to 33 inches; silty clay loam
Bw3-33 to 41 inches; loam
BC-41 to 51 inches; silt loam
C-51 to 63 inches; silt loam
Ab-63 to 75 inches; silt loam
C'-75 to 85 inches; loam

Minor Components

Corbiere silt loam, occasionally flooded, and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Willows silty clay, occasionally flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Scribner silt loam, occasionally flooded, and similar soils
Composition: 0 to 4 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

125-Moonbend silt loam, 0 to 2 percent slopes

Map Unit Setting

General location: Along the Sacramento River
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 55 feet (14 to 18 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Moonbend silt loam-80 percent
Minor components-20 percent

Major Component Description

Moonbend silt loam

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.5 inches (very high)

Hydrologic properties

Present flooding: Rare

Present ponding: None
Current water table: None noted
Natural drainage class: Moderately well drained
Altered hydrology: Flood-control structures on the
Sacramento River have changed flooding frequency and duration.

Land capability classification

Irrigated: 1
Nonirrigated: 4s

Typical profile

Ap-0 to 8 inches; silt loam
Bw1-8 to 19 inches; silty clay loam
Bw2-19 to 33 inches; silty clay loam
Bw3-33 to 41 inches; loam
BC-41 to 51 inches; silt loam
C—51 to 63 inches; silt loam
Ab-63 to 75 inches; silt loam
C'—75 to 85 inches; loam

Minor Components

Vina loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Scribner silt loam and similar soils

Composition: 0 to 6 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Willows silty clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Colusa loam and similar soils
Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Unnamed
Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

126-Moonbend silt loam, 0 to 2 percent slopes, frequently flooded
 Map Unit Setting

General location: Small areas along the Sacramento River, near the Colusa Basin
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 55 feet (14 to 18 meters)

Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Moonbend silt loam, frequently flooded-80 percent Minor components-20 percent

Major Component Description
 Moonbend silt loam, frequently flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.5 inches (very high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Moderately well drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration. Under natural conditions, the soil was frequently flooded for short periods and was not saturated for long periods. Presently, it is frequently flooded for long periods because of its location inside river levees or along the rim of the Colusa Basin, where the soil receives additional floodwater.

Land capability classification

Irrigated: 4w-2

Nonirrigated: 4w-2
Typical profile
Ap-0 to 8 inches; silt loam
Bw1-8 to 19 inches; silty clay loam
Bw2-19 to 33 inches; silty clay loam
Bw3-33 to 41 inches; loam
BC-41 to 51 inches; silt loam
C—51 to 63 inches; silt loam
Ab-63 to 75 inches; silt loam
$C^{\prime}-75$ to 85 inches; loam

Minor Components

Vina loam, frequently flooded, and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Riverwash

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Tujunga loam, frequently flooded, and similar

 soilsComposition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

127-Mallard clay loam, 0 to 1 percent slopes

Map Unit Setting

General location: Near the towns of Arbuckle and Williams
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 45 to 140 feet (15 to 43 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Mallard clay loam-85 percent
Minor components-15 percent
Major Component Description
Mallard clay loam
Geomorphic setting:The lower alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low

Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.4 inches (very high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Water tables have been lowered by drainage ditches used in the production of rice.

Land capability classification

Irrigated: 2 w -3
Nonirrigated: 4w-3
Typical profile
Ap-0 to 3 inches; clay loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 15 inches; clay
Bt3-15 to 28 inches; clay
C1-28 to 44 inches; clay loam
C2-44 to 60 inches; clay loam

Minor Components

Capay clay loam and similar soils
Composition: 0 to 7 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Westfan loam and similar soils
Composition: 0 to 7 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

128-Mallard loam, 0 to 1 percent slopes

Map Unit Setting

General location: Near the towns of Arbuckle and Williams

MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 45 to 100 feet (15 to 31 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Mallard loam-85 percent
Minor components-15 percent

Major Component Description

Mallard loam

Geomorphic setting: The lower alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.8 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Water tables have been lowered by drainage ditches used in the production of rice.

Land capability classification

Irrigated: 2w-3
Nonirrigated: 4w-3
Typical profile
A1-0 to 8 inches; loam
A2-8 to 25 inches; loam
BAt-25 to 39 inches; clay loam
Bt1-39 to 55 inches; clay
Bt2—55 to 60 inches; clay loam

Minor Components

Westfan loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans

Capay clay loam and similar soils

Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

129—Mallard clay loam, 0 to 1 percent slopes, occasionally flooded

Map Unit Setting
General location: Near the towns of Arbuckle and Williams
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 25 to 35 feet (9 to 12 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Mallard clay loam, occasionally flooded-85 percent
Minor components- 15 percent

Major Component Description

Mallard clay loam, occasionally flooded
Geomorphic setting:The lower alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.4 inches (very high)
Hydrologic properties
Present flooding: Occasional

Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Water tables have been lowered by drainage ditches used in the production of rice.

Land capability classification

Irrigated: 2w-3
Nonirrigated: 4w-3
Typical profile
Ap-0 to 3 inches; clay loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 15 inches; clay
Bt3-15 to 28 inches; clay
C1-28 to 44 inches; clay loam
C2-44 to 60 inches; clay loam

Minor Components

Westfan loam, occasionally flooded, and similar soils

Composition: 0 to 10 percent
Slope: 0 to 1 percent
Geomorphic setting: Fans
Capay clay loam, occasionally flooded, and similar soils

Composition: 0 to 4 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting:Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

130-Corbiere silt loam, 0 to 1 percent slopes

Map Unit Setting

General location: Along the margins of the Colusa Basin and Butte Sink
MLRA: 17
Geomorphic setting: Rims of basin floors
Elevation: 25 to 45 feet (9 to 14 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)

Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Corbiere silt loam-85 percent
Minor components-15 percent

Major Component Description

Corbiere silt loam

Geomorphic setting: Rims of basin floors
Parent material: Alluvium
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.1 inches (very high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and have lowered water tables. Drainage ditches used in the production of rice have lowered water tables. It is assumed that under natural conditions the soil was not saturated near the surface.

Land capability classification

Irrigated: 2 w -3
Nonirrigated: 4w-3
Typical profile
Ap-0 to 6 inches; silt loam
Bw1-6 to 13 inches; silt loam
Bw2-13 to 21 inches; silty clay loam
$2 \mathrm{Bw}-21$ to 33 inches; silty clay
$3 \mathrm{Ab}-33$ to 46 inches; silty clay
3Bssb1-46 to 59 inches; silty clay
3Bssb2-59 to 73 inches; silty clay
3C1-73 to 94 inches; clay
3C2-94 to 114 inches; clay

Minor Components

Moonbend silt loam and similar soils

Composition: 0 to 8 percent
Slope: 0 to 1 percent
Geomorphic setting: Flood plains
Willows silty clay and similar soils
Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors
Unnamed
Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

131—Corbiere silt loam, 0 to 2 percent slopes, frequently flooded

Map Unit Setting
General location: Low areas along the margins of the Colusa Basin and Butte Sink
MLRA: 17
Geomorphic setting: Rims of basin floors
Elevation: 25 to 45 feet (9 to 14 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Corbiere silt loam, frequently flooded-85 percent Minor components-15 percent

Major Component Description

Corbiere silt loam, frequently flooded
Geomorphic setting: Rims of basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff rate:Very low

Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.1 inches (very high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. It is assumed that under natural conditions the soil was not saturated near the surface. Flooding frequency has been increased by changes in local hydrology.
Land capability classification
Irrigated: 4w-3
Nonirrigated: 4w-3
Typical profile
Ap-0 to 6 inches; silt loam
Bw1-6 to 13 inches; silt loam
Bw2-13 to 21 inches; silty clay loam
$2 \mathrm{Bw}-21$ to 33 inches; silty clay
3Ab-33 to 46 inches; silty clay
3Bssb1-46 to 59 inches; silty clay
3Bssb2-59 to 73 inches; silty clay
3C1-73 to 94 inches; clay
3C2-94 to 114 inches; clay

Minor Components

Moonbend silt loam, frequently flooded, and similar soils

Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Willows silty clay, frequently flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

133-Corbiere silt loam, 0 to 2 percent slopes, occasionally flooded
 Map Unit Setting

General location: Along the margins of the Colusa Basin and Butte Sink
MLRA: 17
Geomorphic setting: Rims of basin floors
Elevation: 45 to 65 feet (15 to 21 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Corbiere silt loam, occasionally flooded-85 percent Minor components-15 percent

Major Component Description

Corbiere silt loam, occasionally flooded

Geomorphic setting: Rims of basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.1 inches (very high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. Drainage ditches used in the production of rice have lowered water tables. It is assumed that under natural conditions the soil was not saturated near the surface.

Land capability classification

Irrigated: 2w-3
Nonirrigated: 4w-3
Typical profile
Ap-0 to 6 inches; silt loam
Bw1-6 to 13 inches; silt loam
Bw2-13 to 21 inches; silty clay loam
$2 B w-21$ to 33 inches; silty clay
$3 \mathrm{Ab}-33$ to 46 inches; silty clay
3Bssb1-46 to 59 inches; silty clay
3Bssb2-59 to 73 inches; silty clay
3C1-73 to 94 inches; clay
3C2-94 to 114 inches; clay

Minor Components

Moonbend silt loam, occasionally flooded, and similar soils

Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Willows silty clay, occasionally flooded, and similar soils

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

136-Colusa loam, 0 to 2 percent slopes
 Map Unit Setting

General location: South of Colusa and north of Grimes
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 35 to 55 feet (11 to 18 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Colusa loam-85 percent
Minor components-15 percent

Major Component Description

Colusa loam
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Natric-2 to 15 inches
Slowest permeability class: Moderate
Salinity: Saline within a depth of 40 inches
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 9.3 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Drainage ditches have lowered water tables. Under natural conditions the soil has high accumulations of salts at the surface that were deposited by water.

Land capability classification

Irrigated: 4s-6
Nonirrigated:4s-6

Typical profile

A-0 to 2 inches; loam
Btn1-2 to 9 inches; loam
Btn2-9 to 19 inches; loam
Btn3-19 to 25 inches; loam
Btn4-25 to 35 inches; loam
Btn5-35 to 52 inches; loam
Bn1-52 to 64 inches; fine sandy loam
Bn2-64 to 79 inches; fine sandy loam

Minor Components

Moonbend silt loam and similar soils

Composition: 0 to 6 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Vina loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Corbiere silt loam and similar soils
Composition: 0 to 3 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

141-Myers clay, 0 to 2 percent slopes

Map Unit Setting
General location: South and west of the town of Williams
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 120 to 180 feet (37 to 55 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Myers clay-90 percent
Minor components-10 percent

Major Component Description
 Myers clay

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic

Available water capacity: About 8.9 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-5
Nonirrigated:4s-5

Typical profile

Ap-0 to 3 inches; clay
Bss1-3 to 25 inches; clay
Bss2-25 to 43 inches; clay
Bss3-43 to 56 inches; clay
B-56 to 71 inches; clay loam
Minor Components

Capay clay loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Arbuckle sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:Terraces
Westfan loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

144-Hillgate clay loam, 0 to 2 percent slopes

Map Unit Setting

General location: Western margins of the Sacramento Valley, west of Williams and north to the Glenn County boundary

MLRA: 17

Geomorphic setting:Terraces
Elevation: 130 to 450 feet (40 to 138 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Hillgate clay loam-85 percent
Minor components-15 percent
Major Component Description
Hillgate clay loam
Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Depth to restrictive feature: Abrupt textural change19 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.6 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 2s-3
Nonirrigated: 4s-3
Typical profile
A-0 to 10 inches; clay loam
ABt-10 to 19 inches; clay loam
Bt-19 to 50 inches; clay
C-50 to 60 inches; clay loam

Minor Components

Capay clay loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Arand very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Riverwash

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

145—Hillgate loam, 0 to 2 percent slopes

Map Unit Setting

General location: West of Williams and Maxwell, in the Sacramento Valley and in the foothill valleys
MLRA: 17
Geomorphic setting:Terraces
Elevation: 130 to 450 feet (40 to 138 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Hillgate loam-90 percent
Minor components-10 percent

Major Component Description

Hillgate loam

Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Abrupt textural change19 inches

Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-3
Nonirrigated: 4s-3
Typical profile
A1-0 to 3 inches; loam
A2-3 to 11 inches; loam
A3-11 to 19 inches; loam
2Bt1-19 to 37 inches; clay
2Bt2- 37 to 52 inches; clay loam
2Bt3-52 to 62 inches; clay loam
2Bt4-62 to 72 inches; clay loam

Minor Components

Capay clay loam and similar soils
Composition: 0 to 3 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Altamont silty clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:The lower side slopes and northfacing slopes of hills

Ayar clay and similar soils

Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Arand very gravelly sandy loam and similar soils

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Riverwash

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed

Composition: 0 to 1 percent

Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops, nonirrigated crops, and livestock grazing
For information about management, see the "Use and Management" section of this publication.

147-Hillgate loam, 1 to 5 percent slopes

Map Unit Setting

General location: West of Arbuckle and foothill valleys MLRA: 17
Geomorphic setting:Terraces
Elevation: 95 to 400 feet (30 to 123 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Hillgate loam-90 percent
Minor components-10 percent

Major Component Description

Hillgate loam
Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments:
None
Depth to restrictive feature: Abrupt textural change19 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-3

Nonirrigated: 4e-3
Typical profile
A1-0 to 3 inches; loam
A2-3 to 11 inches; loam
A3-11 to 19 inches; loam
2Bt1-19 to 37 inches; clay
2Bt2-37 to 52 inches; clay loam
2Bt3-52 to 62 inches; clay loam
2Bt4-62 to 72 inches; clay loam

Minor Components

Arbuckle sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces

Arand very gravelly sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains
Westfan loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans

Unnamed

Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops and livestock grazing For information about management, see the "Use and Management" section of this publication.

150—Arbuckle sandy loam, 1 to 5 percent slopes

Map Unit Setting

General location: Small areas west of the towns of Williams and Arbuckle and along streams in the lower foothills
MLRA: 17
Geomorphic setting:Terraces
Elevation: 95 to 400 feet (30 to 123 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Arbuckle sandy loam-85 percent
Minor components-15 percent

Major Component Description

Arbuckle sandy loam

Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 6.0 inches (moderate)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-4
Nonirrigated: 4e-4
Typical profile
A1-0 to 4 inches; sandy loam
A2-4 to 10 inches; sandy loam
A3-10 to 17 inches; sandy loam
Bt1-17 to 26 inches; gravelly sandy loam
Bt2-26 to 34 inches; gravelly sandy clay loam
Bt3-34 to 44 inches; gravelly loam
BC-44 to 68 inches; very gravelly sandy clay loam

Minor Components

Westfan loam and similar soils

Composition: 0 to 9 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Arand very gravelly sandy loam and similar soils
Composition: 0 to 4 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains
Riverwash
Composition: 0 to 1 percent
Slope: 0 to 2 percent

Geomorphic setting: Channels

Unnamed

Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops and livestock grazing
For information about management, see the "Use and Management" section of this publication.

151—Arbuckle-Hillgate complex, 1 to 5 percent slopes

Map Unit Setting

General location: West of Arbuckle
MLRA: 17
Geomorphic setting:Terraces
Elevation: 95 to 400 feet (30 to 123 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days
Composition
Arbuckle sandy loam-50 percent
Hillgate loam-40 percent
Minor components-10 percent

Major Component Description

Arbuckle sandy loam

Geomorphic setting:Terraces

Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 6.0 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 2e-4
Nonirrigated: 4e-4

Typical profile

A1-0 to 4 inches; sandy loam
A2-4 to 10 inches; sandy loam
A3-10 to 17 inches; sandy loam
Bt1-17 to 26 inches; gravelly sandy loam
Bt2—26 to 34 inches; gravelly sandy clay loam
Bt3-34 to 44 inches; gravelly loam
BC-44 to 68 inches; very gravelly sandy clay loam
Hillgate loam
Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Abrupt textural change19 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-3
Nonirrigated: 4e-3

Typical profile

A1-0 to 3 inches; loam
A2-3 to 11 inches; loam
A3-11 to 19 inches; loam
2Bt1-19 to 37 inches; clay
2Bt2-37 to 52 inches; clay loam
2Bt3-52 to 62 inches; clay loam
2Bt4-62 to 72 inches; clay loam

Minor Components

Westfan loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 2 percent

Geomorphic setting: Fans

Arand very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains

Riverwash

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed

Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops and livestock grazing
For information about management, see the "Use and Management" section of this publication.

152—Arbuckle gravelly loam, 1 to 5 percent slopes

Map Unit Setting

General location: South of Stonyford, in Indian Valley MLRA: 17
Geomorphic setting:Terraces
Elevation: 1,170 to 1,310 feet (357 to 400 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C$)$
Frost-free period: 185 to 210 days

Composition

Arbuckle gravelly loam-85 percent
Minor components-15 percent

Major Component Description

Arbuckle gravelly loam

Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 1 to 5 percent

Runoff rate: Low
Percentage of the surface covered by rock fragments: None

Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.3 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-4
Nonirrigated: 4e-4
Typical profile
A-0 to 8 inches; gravelly loam
Bt1-8 to 29 inches; gravelly clay loam
Bt2-29 to 51 inches; gravelly clay loam
BC-51 to 60 inches; very gravelly clay loam

Minor Components

Hillgate loam and similar soils
Composition: 0 to 7 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces
Arand very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains

Arbuckle sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces
Riverwash
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels
Unnamed
Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, nonirrigated crops, and irrigated pasture
For information about management, see the "Use and Management" section of this publication.

155-Alcapay clay, 0 to 1 percent slopes

Map Unit Setting

General location: North of Maxwell, near Bagley Road and east of Williams
MLRA: 17
Geomorphic setting: Basin floors
Elevation: 45 to 110 feet (14 to 35 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Alcapay clay-90 percent
Minor components-10 percent

Major Component Description

Alcapay clay

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 1 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Saline within a depth of 40 inches
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Rare

Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Water tables have been lowered by drainage ditches used in the production of rice.

Land capability classification

Irrigated: 3w-5

Nonirrigated: 4w-5
Typical profile
Ap1-0 to 5 inches; clay
Ap2-5 to 10 inches; clay
Bw-10 to 24 inches; clay
Bssz-24 to 35 inches; clay
Bnz1-35 to 53 inches; clay
Bnz2-53 to 64 inches; clay

Minor Components

Capay clay loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Alcapay clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting: Basin floors

Hillgate clay loam and similar soils

Composition: 0 to 2 percent
Slope: 0 to 1 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

160-Grandbend loam, 0 to 2 percent slopes

Map Unit Setting

General location: South of Grimes, along the Sacramento River
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 25 to 55 feet (8 to 17 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Grandbend loam-80 percent
Minor components-20 percent

Major Component Description

Grandbend loam

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.2 inches (high)

Hydrologic properties

Present flooding: Rare

Present ponding: None
Current water table: Present
Natural drainage class: Somewhat poorly drained
Altered hydrology: Flood-control structures on the
Sacramento River have changed flooding frequency and duration.

Land capability classification

Irrigated: 2 w -2
Nonirrigated: 4w-2
Typical profile
Ap-0 to 16 inches; loam
C1-16 to 27 inches; loam
C2-27 to 44 inches; sandy loam
C3-44 to 54 inches; silt loam
2Ab-54 to 64 inches; silty clay loam
2Bb-64 to 67 inches; silty clay loam

Minor Components

Vina loam and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Corbiere silt loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Moonbend silt loam and similar soils
Composition: 0 to 4 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

170-Vina loam, 0 to 2 percent slopes, frequently flooded

Map Unit Setting
General location: Small areas along the Sacramento River, inside the levees and in Moulton Weir
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 75 feet (14 to 23 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Vina loam, frequently flooded-80 percent
Minor components-20 percent

Major Component Description

Vina loam, frequently flooded
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.5 inches (high)
Hydrologic properties
Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 4w-2
Nonirrigated: 4w-2

Typical profile

Ap-0 to 8 inches; loam
A1-8 to 14 inches; loam
A2-14 to 21 inches; loam
A3-21 to 26 inches; fine sandy loam
AC-26 to 46 inches; loam
C1-46 to 48 inches; silt loam
C2-48 to 60 inches; silt loam

Minor Components

Tujunga loam, frequently flooded, and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Moonbend silt loam, frequently flooded, and similar soils
Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

171-Vina loam, 0 to 2 percent slopes

Map Unit Setting

General location: Along the Sacramento River, in Sycamore Slough and south of Grimes
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 25 to 75 feet (9 to 23 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Vina loam-85 percent
Minor components-15 percent

Major Component Description

Vina loam
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.5 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 1
Nonirrigated: 4s

Typical profile

Ap-0 to 8 inches; loam
A1-8 to 14 inches; loam
A2-14 to 21 inches; loam
A3-21 to 26 inches; fine sandy loam
AC-26 to 46 inches; loam
C1-46 to 48 inches; silt loam
C2-48 to 60 inches; silt loam

Minor Components

Moonbend silt loam and similar soils

Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Scribner silt loam and similar soils

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Tujunga loam and similar soils
Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

172—Vina fine sandy loam, 0 to 2 percent slopes, frequently flooded

Map Unit Setting
General location: Near the Colusa Weir
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 55 feet (14 to 17 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Vina fine sandy loam, frequently flooded-80 percent Minor components-20 percent

Major Component Description

Vina fine sandy loam, frequently flooded
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.5 inches (high)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 4w-2

Nonirrigated: 4w-2

Typical profile

A1-0 to 15 inches; fine sandy loam
A2-15 to 25 inches; fine sandy loam
AC-25 to 42 inches; fine sandy loam
C1-42 to 52 inches; silt loam
C2—52 to 60 inches; silt loam

Minor Components

Tujunga loam, frequently flooded, and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Moonbend silt loam, frequently flooded, and similar soils
Composition: 0 to 6 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Corbiere silt loam, frequently flooded, and similar soils

Composition: 0 to 3 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

174—Vina loam, 0 to 2 percent slopes, occasionally flooded

Map Unit Setting

General location: Along the Sacramento River and west of Butte Sink
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 75 feet (15 to 23 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Vina loam, occasionally flooded- 85 percent Minor components-20 percent

Major Component Description

Vina loam, occasionally flooded
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.5 inches (high)
Hydrologic properties
Present flooding: Occasional
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2w-2
Nonirrigated: 4w-2
Typical profile
Ap-0 to 8 inches; loam
A1-8 to 14 inches; loam
A2-14 to 21 inches; loam
A3-21 to 26 inches; fine sandy loam
AC-26 to 46 inches; loam
C1-46 to 48 inches; silt loam
C2-48 to 60 inches; silt loam

Minor Components

Tujunga loam, occasionally flooded, and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Moonbend silt loam, occasionally flooded, and similar soils
Composition: 0 to 6 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Corbiere silt loam, occasionally flooded, and similar soils
Composition: 0 to 3 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

175-Tujunga loam, overwash, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

General location: Small areas along the Sacramento River, north of Colusa and inside the levees near the Colusa Weir
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 45 to 65 feet (15 to 20 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Tujunga loam, overwash, frequently flooded-85 percent
Minor components-15 percent

Major Component Description

Tujunga loam, overwash, frequently flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Willows, cottonwoods, annual grasses, and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.1 inches (low)
Hydrologic properties
Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: 4w-2
Nonirrigated: 6w
Typical profile
Ap-0 to 10 inches; loam
C1-10 to 17 inches; fine sand
C2-17 to 37 inches; fine sand
C3-37 to 62 inches; fine sand
Minor Components

Riverwash

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed

Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat
For information about management, see the "Use and Management" section of this publication.

176-Columbia fine sandy loam, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

General location: Along Butte Creek, in the Sutter Basins
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 145 to 180 feet (45 to 55 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Columbia fine sandy loam, frequently flooded-80 percent
Minor components-20 percent

Major Component Description

Columbia fine sandy loam, frequently flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.0 inches (high)
Hydrologic properties
Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 4w-2
Nonirrigated: 4w-2
Typical profile
Ap-0 to 10 inches; fine sandy loam
A-10 to 14 inches; fine sandy loam
C1-14 to 19 inches; fine sandy loam
C2-19 to 33 inches; fine sandy loam
C3-33 to 38 inches; fine sandy loam
C4-38 to 68 inches; very fine sandy loam

Minor Components

Holillipah loamy sand, channeled, and similar soils

Composition: 0 to 14 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 14 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated cropland
For information about management, see the "Use and Management" section of this publication.

177-Holillipah loamy sand, channeled, 0 to 2 percent slopes

Map Unit Setting

General location: Along Butte Creek, in the Sutter Basins
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 145 to 180 feet (45 to 55 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Holillipah loamy sand, channeled-80 percent
Minor components-20 percent

Major Component Description

Holillipah loamy sand, channeled
Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Willows, cottonwoods, annual grasses, and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.4 inches (low)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: 4w-2
Nonirrigated: 4w-2

Typical profile

A-0 to 8 inches; loamy sand
C1-8 to 32 inches; sand
C2-32 to 35 inches; loamy sand
C3-35 to 47 inches; fine sandy loam
C4-47 to 61 inches; loamy fine sand

Minor Components

Columbia fine sandy loam, frequently flooded, and similar soils

Composition: 0 to 14 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 14 percent
Slope: 0 to 1 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated cropland
For information about management, see the "Use and Management" section of this publication.

185—Riverwash

Map Unit Setting

General location: Small areas along streams throughout the county
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 35 to 1,765 feet (12 to 538 meters)
Mean annual precipitation: 14 to 35 inches (355 to 889 millimeters)
Mean annual air temperature: 54 to 63 degrees F (12 to 17 degrees C)
Frost-free period: 150 to 250 days

Composition

Riverwash-95 percent
Minor components-5 percent
Major Component Description
Riverwash
Geomorphic setting: Channels
Kind of material: Alluvium
Typical vegetation: Sparse vegetation; scattered willows, annual grasses, and forbs in some areas

Properties and qualities

Slope: 0 to 2 percent

Runoff: Negligible
Percentage of the surface covered by rock fragments:
10 to 80 percent (coarse, well rounded pebbles)
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.9 inches (low)

Hydrologic properties

Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 8
Typical profile
C1-0 to 3 inches; sandy loam
C2—3 to 60 inches; stratified gravelly coarse sand to loam

Minor Components

Tujunga loam, frequently flooded, and similar soils

Composition: 0 to 5 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains

Use and Management

Major uses: Wildlife habitat and recreation For information about management, see the "Use and Management" section of this publication.

187-Westfan loam, 0 to 2 percent slopes, occasionally flooded

Map Unit Setting

General location: Near Williams and Arbuckle
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 25 to 35 feet (9 to 12 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan loam, occasionally flooded-85 percent
Minor components-15 percent

Major Component Description
 Westfan loam, occasionally flooded

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Sodic within a depth of 40 inches
Available water capacity: About 8.8 inches (high)
Hydrologic properties
Present flooding: Occasional
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2w-2
Nonirrigated: 4w-2
Typical profile
Ap1-0 to 4 inches; loam
Ap2—4 to 14 inches; loam
ABt-14 to 24 inches; loam
Btk-24 to 33 inches; fine sandy loam
Ck1-33 to 43 inches; fine sandy loam
Ck2—43 to 56 inches; fine sandy loam
C1-56 to 69 inches; fine sandy loam
C2-69 to 93 inches; loam
2C—93 to 98 inches; silty clay loam

Minor Components

Capay clay loam, occasionally flooded, and similar soils

Composition: 0 to 7 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Westfan loam and similar soils
Composition: 0 to 7 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent

Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

188-Westfan loam, clay substratum, 0 to

 2 percent slopes
Map Unit Setting

General location: Between the towns of Williams and Arbuckle, on the western margin of the Sacramento Valley
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 75 to 150 feet (23 to 46 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan loam, clay substratum-80 percent
Minor components-20 percent

Major Component Description

Westfan loam, clay substratum
Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.6 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 2s-3
Nonirrigated:4s-3

Typical profile

Ap-0 to 15 inches; loam
Bt1-15 to 41 inches; clay loam
2Bt2-41 to 60 inches; clay

Minor Components

Westfan loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Westfan gravelly loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans

Arand very gravelly sandy loam and similar

 soilsComposition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Mallard clay loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:The lower alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting:Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

189-Arand very gravelly sandy loam, 0 to 2 percent slopes

Map Unit Setting

General location: Near Sand Creek and Cortina Creek, north of Arbuckle
MLRA: 17
Geomorphic setting: Alluvial fans and flood plains
Elevation: 45 to 605 feet (15 to 185 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Arand very gravelly sandy loam-85 percent Minor components-15 percent

Major Component Description

Arand very gravelly sandy loam

Geomorphic setting: Alluvial fans and flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops
Properties and qualities
Slope: 0 to 2 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained
Land capability classification
Irrigated: 4s-4
Nonirrigated: 4s-4

Typical profile

A-0 to 8 inches; very gravelly sandy loam
C1-8 to 18 inches; very gravelly sandy loam
C2-18 to 24 inches; very gravelly sandy loam
C3-24 to 65 inches; very gravelly sand

Minor Components

Westfan gravelly loam and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Arbuckle sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:Terraces

Riverwash

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed
Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

190—Arand very gravelly loam, 0 to 2 percent slopes

Map Unit Setting

General location: Fouts Springs and Indian Valley, near Stonyford
MLRA: 17
Geomorphic setting: Flood plains
Elevation: 1,535 to 1,735 feet (468 to 529 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 210 days

Composition

Arand very gravelly loam-85 percent
Minor components-15 percent
Major Component Description

Arand very gravelly loam

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.9 inches (low)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: 4s-4
Nonirrigated: 4s-4

Typical profile

A-0 to 10 inches; very gravelly loam
C1-10 to 32 inches; extremely gravelly loam
C2-32 to 60 inches; extremely gravelly loamy sand

Minor Components

Arbuckle gravelly loam and similar soils

Composition: 0 to 12 percent
Slope: 1 to 3 percent
Geomorphic setting:Terraces

Riverwash

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing and irrigated crops
For information about management, see the "Use and Management" section of this publication.

193-Westfan gravelly loam, 0 to 2 percent slopes

Map Unit Setting

General location: Between Arbuckle and Williams
MLRA: 17
Geomorphic setting: Alluvial fans
Elevation: 75 to 295 feet (23 to 91 meters)
Mean annual precipitation: 14 to 16 inches (355 to 405 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Westfan gravelly loam-80 percent
Minor components-20 percent
Major Component Description
Westfan gravelly loam
Geomorphic setting: Alluvial fans

Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.7 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated:2s-4
Nonirrigated: 4s-4
Typical profile
Ap-0 to 4 inches; gravelly loam
A1-4 to 20 inches; gravelly loam
A2-20 to 30 inches; gravelly loam
Bw-30 to 60 inches; gravelly loam

Minor Components

Arand very gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Westfan loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Westfan loam, clay substratum, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Fans
Mallard clay loam and similar soils
Composition: 0 to 4 percent
Slope: 0 to 2 percent
Geomorphic setting: The lower alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent

Geomorphic setting: Channels

Use and Management

Major use: Irrigated crops
For information about management, see the "Use and Management" section of this publication.

200-Clear Lake clay, 0 to 2 percent slopes, occasionally flooded

Map Unit Setting

General location: Small areas in foothill basins MLRA: 15
Geomorphic setting: Basins
Elevation: 175 to 1,360 feet (54 to 415 meters)
Mean annual precipitation: 14 to 20 inches (355 to 510 millimeters)
Mean annual air temperature: 57 to 63 degrees $F(14$ to 17 degrees C)
Frost-free period: 185 to 250 days

Composition

Clear Lake clay, occasionally flooded-90 percent Minor components-10 percent

Major Component Description

Clear Lake clay, occasionally flooded
Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Flood-control structures on the Sacramento River have changed flooding frequency and duration and lowered water tables. The soil has been drained by stream incisement.

Land capability classification
Irrigated: 3w-5

Nonirrigated: 4w-5

Typical profile
Ap1-0 to 4 inches; clay
Ap2-4 to 10 inches; clay
Bss1-10 to 20 inches; clay
Bss2-20 to 34 inches; clay
Bss3-34 to 47 inches; clay
Bssk1-47 to 59 inches; clay
Bssk2-59 to 79 inches; clay

Minor Components

Capay clay loam, occasionally flooded, and similar soils

Composition: 0 to 7 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Altamont silty clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:The lower side slopes and northfacing slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

204-Capay clay, 0 to 3 percent slopes, occasionally flooded

Map Unit Setting

General location: Small areas in foothill basins
MLRA: 15
Geomorphic setting: Basins
Elevation: 175 to 350 feet (54 to 107 meters)
Mean annual precipitation: 16 to 22 inches (405 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 225 to 250 days

Composition

Capay clay, occasionally flooded-90 percent
Minor components-10 percent

Major Component Description
 Capay clay, occasionally flooded

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 3 percent
Runoff rate: High
Surface features: Polygonal surface cracking; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)
Hydrologic properties
Present flooding: Occasional
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained

Land capability classification

Irrigated: 2w-5
Nonirrigated: 4w-5

Typical profile

A1-0 to 4 inches; clay
A2-4 to 11 inches; clay
Bss1-11 to 23 inches; clay
Bss2-23 to 30 inches; clay
Bss3-30 to 43 inches; clay
Bss4-43 to 58 inches; clay
Bss5-58 to 74 inches; clay
Bss6-74 to 90 inches; clay
Bss7-90 to 102 inches; clay

Minor Components

Capay clay and similar soils

Composition: 0 to 5 percent
Slope: 0 to 3 percent
Geomorphic setting: Basin floors
Altamont silty clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 3 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Clear Lake clay, occasionally flooded, and similar soils

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 3 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

205-Capay clay, 0 to 3 percent slopes
 Map Unit Setting

General location: Foothill basins
MLRA: 15
Geomorphic setting: Basins
Elevation: 175 to 1,200 feet (54 to 366 meters)
Mean annual precipitation: 16 to 28 inches (405 to 710 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 225 to 250 days

Composition

Capay clay-90 percent
Minor components-10 percent

Major Component Description

Capay clay

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 3 percent
Runoff rate: High
Surface features: Polygonal surface cracking; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained

Land capability classification

Irrigated: 2s-5
Nonirrigated: 4s-5
Typical profile
A1-0 to 4 inches; clay
A2-4 to 11 inches; clay
Bss1-11 to 23 inches; clay
Bss2-23 to 30 inches; clay
Bss3-30 to 43 inches; clay
Bss4-43 to 58 inches; clay
Bss5-58 to 74 inches; clay
Bss6-74 to 90 inches; clay
Bss7-90 to 102 inches; clay
Minor Components
Capay clay, occasionally flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 3 percent
Geomorphic setting: Basin floors
Altamont silty clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 3 percent
Geomorphic setting:The lower side slopes and northfacing slopes of hills

Clear Lake clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 3 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 3 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

206-Capay clay, 5 to 9 percent slopes
 Map Unit Setting

General location: Foothill basins

MLRA: 15
Geomorphic setting: Basins
Elevation: 175 to 400 feet (54 to 122 meters)
Mean annual precipitation: 16 to 22 inches (405 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 225 to 250 days

Composition

Capay clay-90 percent
Minor components-10 percent

Major Component Description

Capay clay
Geomorphic setting:Toeslopes
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 5 to 9 percent
Runoff rate: Very low
Surface features: Polygonal surface cracking; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 8.9 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained
Land capability classification
Irrigated: 2s-5
Nonirrigated: 4s-5
Typical profile
A1-0 to 4 inches; clay
A2—4 to 11 inches; clay
Bss1-11 to 23 inches; clay
Bss2-23 to 30 inches; clay
Bss3-30 to 43 inches; clay
Bss4-43 to 58 inches; clay
Bss5-58 to 74 inches; clay
Bss6-74 to 90 inches; clay
Bss7-90 to 102 inches; clay

Minor Components

Capay clay, occasionally flooded, and similar soils
Composition: 0 to 5 percent
Slope: 0 to 3 percent
Geomorphic setting: Basin floors
Altamont silty clay and similar soils
Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Clear Lake clay and similar soils

Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

210-Corval loam, 0 to 3 percent slopes Map Unit Setting

General location: None noted
MLRA: 15
Geomorphic setting: Flood plains and alluvial fans
Elevation: 200 to 1,400 feet (61 to 427 meters)
Mean annual precipitation: 14 to 22 inches (355 to 560 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 250 days
Composition
Corval loam-85 percent
Minor components-15 percent

Major Component Description

Corval loam

Geomorphic setting: Flood plains and alluvial fans Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 3 percent

Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 11.0 inches (very high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 1
Nonirrigated: 4s
Typical profile
A-0 to 8 inches; loam
Bw1-8 to 24 inches; clay loam
Bw2-24 to 36 inches; clay loam
Bw3-36 to 46 inches; clay loam
Bw4-46 to 60 inches; silty clay loam
Bw5-60 to 70 inches; clay loam

Minor Components

Vina loam and similar soils
Composition: 0 to 9 percent
Slope: 0 to 3 percent
Geomorphic setting: Flood plains
Arand very gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 0 to 3 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 3 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

211-Corval clay loam, 0 to 3 percent slopes

Map Unit Setting

General location: West of Maxwell and foothill valleys

MLRA: 17
Geomorphic setting: Flood plains and alluvial fans
Elevation: 85 to 1,400 feet (27 to 427 meters)
Mean annual precipitation: 14 to 22 inches (355 to 560 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 250 days

Composition

Corval clay loam-85 percent
Minor components-15 percent

Major Component Description

Corval clay loam
Geomorphic setting: Alluvial fans and flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 3 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments:
None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 11.2 inches (very high)

Hydrologic properties

Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 1
Nonirrigated: 4s
Typical profile
Ap-0 to 10 inches; clay loam
A-10 to 50 inches; clay loam
Bw-50 to 60 inches; clay loam

Minor Components

Mallard clay loam and similar soils
Composition: 0 to 8 percent
Slope: 0 to 3 percent
Geomorphic setting: The lower alluvial fans

Vina loam and similar soils

Composition: 0 to 6 percent
Slope: 0 to 3 percent

Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 3 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops and livestock grazing
For information about management, see the "Use and Management" section of this publication.

212—Ayar clay, 5 to 15 percent slopes

Map Unit Setting

General location: West of Maxwell, in the lower foothills and near Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 150 to 505 feet (46 to 154 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Ayar clay-85 percent
Minor components-15 percent
Major Component Description
Ayar clay
Geomorphic setting: Side slopes of hills
Parent material: Calcareous residuum weathered from sandstone
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—60 to 80 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.4 inches (high)
Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 3e-5
Nonirrigated:4e-5
Typical profile
A1-0 to 9 inches; clay
A2-9 to 25 inches; clay
Bss1-25 to 36 inches; clay
Bss2- 36 to 46 inches; clay
Bw-46 to 58 inches; clay
C-58 to 72 inches; clay loam
Cr-72 inches; soft or weathered bedrock

Minor Components

Altamont silty clay and similar soils
Composition: 0 to 5 percent
Slope: 5 to 15 percent
Geomorphic setting:The lower side slopes and northfacing slopes of hills

Capay clay and similar soils

Composition: 0 to 4 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Balcom silt loam and similar soils

Composition: 0 to 2 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of hills
Millsholm loam and similar soils
Composition: 0 to 2 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of hills
Hillgate clay loam and similar soils
Composition: 0 to 1 percent
Slope: 5 to 15 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 15 percent
Geomorphic setting: Channels

[^0]
213-Ayar clay, 15 to 30 percent slopes

Map Unit Setting

General location: West of Maxwell, in the lower foothills and near Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 150 to 505 feet (46 to 154 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Ayar clay-85 percent
Minor components-15 percent
Major Component Description
Ayar clay
Geomorphic setting: Side slopes of hills
Parent material: Calcareous residuum weathered from sandstone
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-60 to 80 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.4 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated:4e-5
Nonirrigated: 4e-5

Typical profile

A1-0 to 9 inches; clay
A2-9 to 25 inches; clay
Bss1-25 to 36 inches; clay

Bss2-36 to 46 inches; clay
Bw-46 to 58 inches; clay
C-58 to 72 inches; clay loam
Cr-72 inches; soft or weathered bedrock

Minor Components

Altamont silty clay and similar soils
Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Balcom silt loam and similar soils

Composition: 0 to 3 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 3 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Millsholm loam and similar soils

Composition: 0 to 3 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills
Hillgate clay loam and similar soils
Composition: 0 to 1 percent
Slope: 3 to 9 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

215—Altamont-Sehorn complex, 15 to 30 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills on steep ridges
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 800 feet (61 to 244 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)

Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Altamont silty clay-45 percent
Sehorn silty clay-35 percent
Minor components-20 percent

Major Component Description

Altamont silty clay

Geomorphic setting: The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-5
Typical profile
A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1-35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr -49 inches; soft or weathered bedrock

Sehorn silty clay

Geomorphic setting: Side slopes of hills

Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.5 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated:4e-5

Typical profile

A-0 to 5 inches; silty clay
$\mathrm{Bw}-5$ to 9 inches; silty clay
Bss1-9 to 19 inches; silty clay
Bss2-19 to 26 inches; gravelly silty clay
BC-26 to 35 inches; extremely gravelly silty clay
R-35 inches; unweathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 7 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Ayar clay and similar soils

Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 3 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors
Balcom silt loam and similar soils
Composition: 0 to 2 percent

Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills
Millsholm loam and similar soils
Composition: 0 to 2 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

216-Altamont-Sehorn complex, 9 to 15 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills on steep ridges
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 800 feet (61 to 244 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Altamont silty clay-45 percent
Sehorn silty clay- 35 percent
Minor components-20 percent

Major Component Description

Altamont silty clay
Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 9 to 15 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the
polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 3e-5
Nonirrigated: 4e-5

Typical profile

A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1-35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr-49 inches; soft or weathered bedrock

Sehorn silty clay

Geomorphic setting: Side slopes of hills

Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 9 to 15 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.5 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 3e-5
Nonirrigated: 4e-5

Typical profile

A-0 to 5 inches; silty clay
Bw-5 to 9 inches; silty clay
Bss1-9 to 19 inches; silty clay
Bss2-19 to 26 inches; gravelly silty clay
BC-26 to 35 inches; extremely gravelly silty clay
R-35 inches; unweathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 7 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Ayar clay and similar soils

Composition: 0 to 4 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 3 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Balcom silt loam and similar soils

Composition: 0 to 2 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Millsholm loam and similar soils

Composition: 0 to 2 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 1 percent
Slope: 9 to 15 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 9 to 15 percent
Geomorphic setting: Channels

Use and Management
 Major use: Livestock grazing
 For information about management, see the "Use and Management" section of this publication.
 218-Sehorn-Altamont complex, 30 to 50 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills on steep ridges
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 800 feet (61 to 244 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Sehorn silty clay-45 percent
Altamont silty clay- 35 percent
Minor components-20 percent

Major Component Description

Sehorn silty clay

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.5 inches (low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 5 inches; silty clay
Bw-5 to 9 inches; silty clay
Bss1-9 to 19 inches; silty clay
Bss2-19 to 26 inches; gravelly silty clay
BC-26 to 35 inches; extremely gravelly silty clay
R-35 inches; unweathered bedrock

Altamont silty clay

Geomorphic setting: The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic) - 40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1- 35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr -49 inches; soft or weathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills
Millsholm loam and similar soils
Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Balcom silt loam and similar soils

Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills
Ayar clay and similar soils
Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 1 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

220—Altamont silty clay, 5 to 9 percent slopes

Map Unit Setting

General location: West of Maxwell, in the lower foothills and Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 800 feet (61 to 244 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)

Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Altamont silty clay-85 percent
Minor components-15 percent

Major Component Description

Altamont silty clay

Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 5 to 9 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-5
Nonirrigated: 4e-5

Typical profile

A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1-35 to 43 inches; very gravelly silty clay
BC2—43 to 49 inches; silty clay
Cr -49 inches; soft or weathered bedrock

Minor Components

Ayar clay and similar soils
Composition: 0 to 5 percent

Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills
Sehorn silty clay and similar soils
Composition: 0 to 5 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 3 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Millsholm loam and similar soils

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

221—Altamont silty clay, 9 to 15 percent slopes

Map Unit Setting

General location: West of Maxwell, in the lower foothills and Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 800 feet (61 to 244 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days
Composition
Altamont silty clay-85 percent
Minor components-15 percent

Major Component Description

Altamont silty clay

Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale

Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 9 to 15 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 3e-5
Nonirrigated:4e-5
Typical profile
A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1- 35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr -49 inches; soft or weathered bedrock

Minor Components

Ayar clay and similar soils

Composition: 0 to 5 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Sehorn silty clay and similar soils

Composition: 0 to 5 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills
Capay clay and similar soils
Composition: 0 to 4 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent

Slope: 9 to 15 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

230-Corning clay loam, 1 to 5 percent slopes

Map Unit Setting

General location: Small scattered areas throughout the foothills
MLRA: 14
Geomorphic setting:Terraces
Elevation: 150 to 1,295 feet (46 to 396 meters)
Mean annual precipitation: 14 to 22 inches (355 to 560 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Corning clay loam-90 percent
Minor components-10 percent

Major Component Description
 Corning clay loam

Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Abrupt textural change-9 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.7 inches (very low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 3e-5
Nonirrigated: 4e-5

Typical profile

A1-0 to 4 inches; clay loam
A2-4 to 9 inches; clay loam
Bt1-9 to 20 inches; clay
Bt2-20 to 31 inches; gravelly clay
2BC1-31 to 39 inches; gravelly clay loam
2BC2-39 to 52 inches; very cobbly sandy clay loam
3BC3-52 to 60 inches; very gravelly sandy loam

Minor Components

Arbuckle sandy loam and similar soils

Composition: 0 to 6 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces
Ayar clay and similar soils
Composition: 0 to 3 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

232-Maywood gravelly loam, 0 to 2 percent slopes, occasionally flooded

Map Unit Setting

General location: Small areas along Stony Creek
MLRA: 14
Geomorphic setting: Flood plains
Elevation: 1,115 to 1,245 feet (341 to 381 meters)
Mean annual precipitation: 19 to 22 inches (483 to 559 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Maywood gravelly loam, occasionally flooded-85 percent

Minor components-15 percent

Major Component Description

Maywood gravelly loam, occasionally flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Irrigated crops

Properties and qualities

Slope: 0 to 2 percent

Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.2 inches (high)

Hydrologic properties

Present flooding: Occasional
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-2
Nonirrigated:4e-2

Typical profile

A-0 to 16 inches; gravelly loam
C1-16 to 22 inches; loam
C2-22 to 41 inches; loam
C3-41 to 57 inches; silt loam
$2 \mathrm{Ab}-57$ to 60 inches; fine sandy loam

Minor Components

Arand very gravelly loam and similar soils

Composition: 0 to 9 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains

Arbuckle gravelly loam and similar soils

Composition: 0 to 3 percent
Slope: 1 to 3 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels
Riverwash
Composition: 0 to 1 percent

Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing and irrigated crops
For information about management, see the "Use and Management" section of this publication.

233-Eastpark clay loam, 0 to 2 percent slopes

Map Unit Setting

General location: Indian Valley, south of Stonyford MLRA: 14
Geomorphic setting:Terraces
Elevation: 600 to 1,275 feet (183 to 390 meters)
Mean annual precipitation: 14 to 24 inches (355 to 610 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 250 days

Composition

Eastpark clay loam-95 percent
Minor components-5 percent

Major Component Description

Eastpark clay loam

Geomorphic setting:Terraces
Parent material: Alluvium derived from serpentinite
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent

Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 6.7 inches
(moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-9
Nonirrigated:4s-9

Typical profile

A-0 to 7 inches; clay loam
Bt-7 to 15 inches; gravelly clay loam
BCt-15 to 26 inches; very gravelly clay
2C1-26 to 45 inches; extremely gravelly clay Ioam
3C2—45 to 54 inches; loam
3C3-54 to 60 inches; extremely gravelly sandy clay loam

Minor Components

Venado clay and similar soils

Composition: 0 to 4 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, nonirrigated crops, and irrigated pasture
For information about management, see the "Use and Management" section of this publication.

241-Contra Costa-Altamont association, 30 to 50 percent slopes

Map Unit Setting

General location: South of Sites, near Antelope Valley MLRA: 15
Geomorphic setting: Hills
Elevation: 600 to 950 feet (183 to 290 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Contra Costa loam-55 percent
Altamont silty clay-35 percent
Minor components-10 percent

Major Component Description

Contra Costa Ioam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Altamont silty clay

Geomorphic setting: The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)
Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1- 35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr -49 inches; soft or weathered bedrock

Minor Components

Millsholm loam and similar soils
Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent Slope: 30 to 50 percent Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

253-Millsholm-Altamont-Rock outcrop complex, 5 to 15 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills MLRA: 15
Geomorphic setting: Hills
Elevation: 180 to 350 feet (55 to 107 meters)

Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam-55 percent
Altamont silty clay-20 percent
Rock outcrop-15 percent
Minor components-10 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Altamont silty clay

Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale

Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 3e-8
Nonirrigated: 4e-8
Typical profile
A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1-35 to 43 inches; very gravelly silty clay
BC2—43 to 49 inches; silty clay
Cr-49 inches; soft or weathered bedrock

Rock outcrop

Geomorphic setting: Hills
Kind of rock: Sandstone and shale
Typical vegetation: Most areas are barren, but some areas have a few grasses.

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Very high
Surface features: Hard, exposed bedrock
Land capability classification
Irrigated: Not calculated
Nonirrigated: 8

Minor Components

Capay clay and similar soils

Composition: 0 to 5 percent

Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Contra Costa loam and similar soils

Composition: 0 to 4 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of hills
Unnamed
Composition: 0 to 1 percent
Slope: 5 to 15 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

255-Millsholm-Rock outcrop complex, 9 to 30 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 400 feet (61 to 122 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam—55 percent
Rock outcrop-35 percent
Minor components-10 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 9 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 6e
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock
Rock outcrop
Geomorphic setting: Hills
Kind of rock: Sandstone and shale
Typical vegetation: Most areas are barren, but some areas have a few grasses.

Properties and qualities

Slope: 9 to 30 percent
Runoff rate: Very high
Surface features: Hard, exposed bedrock

Land capability classification

Irrigated: Not calculated Nonirrigated: 8

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 5 percent
Slope: 9 to 30 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors
Sehorn silty clay and similar soils
Composition: 0 to 2 percent
Slope: 9 to 30 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent

Slope: 9 to 30 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

257-Millsholm-Capay complex, 3 to 9 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills MLRA: 14 and 15
Geomorphic setting: Hills
Elevation: 25 to 400 feet (9 to 122 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam-50 percent
Capay clay- 35 percent
Minor components-15 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 3 to 9 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 6e
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Capay clay

Geomorphic setting: Basin floors
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 3 to 9 percent
Runoff rate:Very low
Surface features: Polygonal surface cracking; polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Very slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 11.2 inches (very high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: Present
Natural drainage class: Moderately well drained

Land capability classification

Irrigated: 2s-5
Nonirrigated: 4s-5

Typical profile

A1-0 to 4 inches; clay
A2-4 to 11 inches; clay
Bss1-11 to 23 inches; clay
Bss2-23 to 30 inches; clay
Bss3-30 to 43 inches; clay
Bss4-43 to 58 inches; clay
Bss5-58 to 74 inches; clay
Bss6-74 to 90 inches; clay
Bss7-90 to 102 inches; clay

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 6 percent
Slope: 3 to 9 percent

Geomorphic setting: Side slopes of hills

Sehorn silty clay and similar soils

Composition: 0 to 5 percent
Slope: 3 to 9 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 3 percent
Slope: 3 to 9 percent
Geomorphic setting: Mountains and hills
Unnamed
Composition: 0 to 1 percent
Slope: 3 to 9 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

261-Millsholm-Altamont complex, 15 to 30 percent slopes

Map Unit Setting

General location: The lower Coast Range foothills
MLRA: 15
Geomorphic setting: Hills
Elevation: 400 to 600 feet (122 to 183 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam-60 percent
Altamont silty clay-25 percent
Minor components-15 percent

Major Component Description

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak
Properties and qualities
Slope: 15 to 30 percent
Runoff rate: Medium

Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated

Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Altamont silty clay

Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 15 to 30 percent

Runoff rate: Medium
Surface features: Polygonal cracking pattern; the
polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic) - 40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class:Well drained

Land capability classification

Irrigated:4e-5
Nonirrigated: 4e-5

Typical profile

A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1- 35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr-49 inches; soft or weathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 8 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills
Sehorn silty clay and similar soils
Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent Slope: 15 to 30 percent Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

270—Balcom-Ayar complex, 15 to 30 percent slopes

Map Unit Setting

General location: The lower foothills west of Maxwell and near Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 500 feet (61 to 153 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)

Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Balcom silt loam-55 percent
Ayar clay-30 percent
Minor components-15 percent

Major Component Description

Balcom silt loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-26 to 40 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.7 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-3
Typical profile
A1-0 to 2 inches; silt loam
A2-2 to 11 inches; silt loam
Bk1-11 to 18 inches; silty clay loam
Bk2-18 to 33 inches; silt loam
$\mathrm{Cr}-33$ inches; soft or weathered bedrock

Ayar clay

Geomorphic setting: Side slopes of hills
Parent material: Calcareous residuum weathered from sandstone
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent

Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-60 to 80 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.4 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-5

Typical profile

A1-0 to 9 inches; clay
A2-9 to 25 inches; clay
Bss1-25 to 36 inches; clay
Bss2-36 to 46 inches; clay
Bw-46 to 58 inches; clay
C-58 to 72 inches; clay loam
Cr -72 inches; soft or weathered bedrock

Minor Components

Altamont silty clay and similar soils

Composition: 0 to 6 percent
Slope: 15 to 30 percent
Geomorphic setting:The lower side slopes and northfacing slopes of hills

Hillgate clay loam and similar soils

Composition: 0 to 3 percent
Slope: 3 to 9 percent
Geomorphic setting:Terraces

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors
Clear Lake clay and similar soils
Composition: 0 to 2 percent
Slope: 15 to 30 percent
Geomorphic setting: Basin floors

Millsholm loam and similar soils

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

271-Balcom-Ayar complex, 30 to 50 percent slopes

Map Unit Setting

General location: The lower foothills west of Maxwell and near Spring Valley
MLRA: 15
Geomorphic setting: Hills
Elevation: 200 to 500 feet (61 to 153 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days
Composition
Balcom silt loam-55 percent
Ayar clay-30 percent
Minor components-15 percent

Major Component Description

Balcom silt loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—26 to 40 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline

Sodicity: Not sodic
Available water capacity: About 5.7 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A1-0 to 2 inches; silt loam
A2-2 to 11 inches; silt loam
Bk1-11 to 18 inches; silty clay loam
Bk2—18 to 33 inches; silt loam
$\mathrm{Cr}-33$ inches; soft or weathered bedrock

Ayar clay

Geomorphic setting: Side slopes of hills
Parent material: Calcareous residuum weathered from sandstone
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic) - 60 to 80 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.4 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A1-0 to 9 inches; clay
A2-9 to 25 inches; clay
Bss1-25 to 36 inches; clay

Bss2-36 to 46 inches; clay
Bw-46 to 58 inches; clay
C-58 to 72 inches; clay loam
Cr-72 inches; soft or weathered bedrock

Minor Components

Altamont silty clay and similar soils
Composition: 0 to 8 percent
Slope: 30 to 50 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Hillgate clay loam and similar soils

Composition: 0 to 3 percent
Slope: 3 to 9 percent
Geomorphic setting:Terraces
Capay clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors
Millsholm loam and similar soils
Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

275-Goldeagle-Positas-Balcom complex, 30 to 75 percent slopes

Map Unit Setting

General location: Coast Range foothills west of Arbuckle
MLRA: 15
Geomorphic setting: Dissected terraces
Elevation: 350 to 1,000 feet (107 to 305 meters)
Mean annual precipitation: 16 to 18 inches (405 to 458 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Goldeagle clay loam-45 percent
Positas gravelly sandy loam-25 percent
Balcom silt loam-15 percent
Minor components-15 percent

Major Component Description

Goldeagle clay loam

Geomorphic setting: Side slopes of terraces
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities
Slope: 30 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)—40 to 80 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.1 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A-0 to 3 inches; sandy clay loam
Bt1-3 to 9 inches; clay loam
Bt2-9 to 25 inches; clay loam
Btk-25 to 33 inches; clay loam
2Ck1-33 to 49 inches; sandy loam
2Ck2—49 to 59 inches; loam
$2 \mathrm{Cr}-59$ inches; weathered bedrock

Positas gravelly sandy loam

Geomorphic setting: Side slopes of dissected terraces Parent material: Alluvium
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments:
0 to 20 percent (medium, well rounded pebbles)
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.1 inches (moderate)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated

Nonirrigated: 7e
Typical profile
A1-0 to 2 inches; gravelly sandy loam
A2-2 to 9 inches; gravelly sandy loam
A3-9 to 21 inches; gravelly sandy loam
2Bt1-21 to 34 inches; gravelly clay
2Bt2-34 to 50 inches; very gravelly clay
2Bt3-50 to 62 inches; very gravelly clay
2Bt4-62 to 80 inches; very gravelly clay

Balcom silt loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-26 to 40 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.7 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None

Current water table: None noted Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 2 inches; silt loam
A2-2 to 11 inches; silt loam
Bk1-11 to 18 inches; silty clay loam
Bk2-18 to 33 inches; silt loam
$\mathrm{Cr}-33$ inches; soft or weathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of hills
Ayar clay and similar soils
Composition: 0 to 3 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of hills

Altamont silty clay and similar soils

Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Corning clay loam and similar soils

Composition: 0 to 2 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces

Hillgate loam and similar soils

Composition: 0 to 2 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

276-Positas gravelly sandy loam, 30 to 50 percent slopes

Map Unit Setting

General location: Foothills west of Arbuckle, southern end of Sand Creek, near Yolo County boundary
MLRA: 15
Geomorphic setting: Dissected terraces
Elevation: 520 to 1,600 feet (159 to 488 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Positas gravelly sandy loam-90 percent
Minor components-10 percent

Major Component Description

Positas gravelly sandy loam

Geomorphic setting: Side slopes on dissected terraces Parent material: Alluvium
Typical vegetation: Shrubs with widely scattered
hardwoods and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments:
0 to 20 percent (medium, well rounded pebbles)
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.1 inches (moderate)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A1-0 to 2 inches; gravelly sandy loam
A2-2 to 9 inches; gravelly sandy loam
A3-9 to 21 inches; gravelly sandy loam
2Bt1-21 to 34 inches; gravelly clay
2Bt2—34 to 50 inches; very gravelly clay

2Bt3-50 to 62 inches; very gravelly clay
$2 \mathrm{Bt} 4-62$ to 80 inches; very gravelly clay

Minor Components

Balcom silt loam and similar soils

Composition: 0 to 6 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills
Corval loam and similar soils
Composition: 0 to 3 percent
Slope: 0 to 3 percent
Geomorphic setting: Flood plains and fans
Unnamed
Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

280-Skyhigh-Millsholm complex, 15 to 50 percent slopes

Map Unit Setting

General location: Along Walker Ridge, near the Lake County boundary, south of Bear Valley, and near Cache Creek
MLRA: 15
Geomorphic setting: Hills
Elevation: 1,600 to 2,795 feet (488 to 853 meters)
Mean annual precipitation: 22 to 28 inches (558 to 711 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Skyhigh gravelly clay loam-45 percent
Millsholm loam-30 percent
Minor components-25 percent

Major Component Description

Skyhigh gravelly clay loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale

Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 0 to 30 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.8 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 3 inches; loam
Bt1-3 to 8 inches; gravelly clay loam
Bt2-8 to 25 inches; gravelly clay
Bt3-25 to 37 inches; gravelly sandy clay loam
R-37 inches; unweathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None

Current water table: None noted Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Minor Components

Etsel gravelly sandy loam and similar soils
Composition: 0 to 10 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains
Maymen sandy loam and similar soils
Composition: 0 to 10 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains

Rock outcrop

Composition: 0 to 4 percent
Slope: 15 to 50 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent Slope: 15 to 50 percent Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

300-Contra Costa-Millsholm complex, 50 to 75 percent slopes

Map Unit Setting

General location: Foothill ridges east of Indian Valley MLRA: 15
Geomorphic setting: Hills
Elevation: 1,300 to 2,450 feet (397 to 748 meters)
Mean annual precipitation: 20 to 26 inches (508 to 660 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)

Frost-free period: 185 to 210 days

Composition

Contra Costa loam-50 percent Millsholm loam-40 percent
Minor components-10 percent

Major Component Description

Contra Costa Ioam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 50 to 75 percent, northeast to northwest aspects
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 50 to 75 percent, southeast to west aspects

Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A—0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 50 to 75 percent
Geomorphic setting: Mountains and hills
Unnamed
Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

305-Contra Costa loam, 50 to 75 percent slopes

Map Unit Setting

General location: Foothill ridges east of Indian Valley MLRA: 15
Geomorphic setting: Hills
Elevation: 1,300 to 2,450 feet (397 to 748 meters)

Mean annual precipitation: 20 to 26 inches (508 to 660 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 210 days

Composition

Contra Costa loam-85 percent
Minor components-15 percent

Major Component Description

Contra Costa loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with scrub oak, poison oak, blue oak, and annual grasses

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated:7e
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Minor Components

Millsholm loam and similar soils

Composition: 0 to 10 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 50 to 75 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

311-Contra Costa loam, 9 to 15 percent slopes

Map Unit Setting

General location: Indian Valley, south of Stonyford
MLRA: 15
Geomorphic setting: Hills
Elevation: 1,200 to 1,275 feet (366 to 390 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Contra Costa loam- 85 percent
Minor components-15 percent

Major Component Description
 Contra Costa Ioam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 9 to 15 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: 3e-5
Nonirrigated: 4e-5
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Minor Components

Altamont silty clay and similar soils
Composition: 0 to 6 percent
Slope: 9 to 15 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Millsholm loam and similar soils
Composition: 0 to 6 percent
Slope: 9 to 15 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 2 percent
Slope: 9 to 15 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 9 to 15 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

312-Saltcanyon loam, 1 to 5 percent slopes

Map Unit Setting
General location: Antelope Valley and Bear Valley MLRA: 14
Geomorphic setting: Alluvial fans

Elevation: 600 to 1,450 feet (183 to 442 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 210 to 225 days

Composition

Saltcanyon loam-90 percent
Minor components-10 percent

Major Component Description

Saltcanyon loam
Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 1 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.8 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-1
Nonirrigated: 4e-1

Typical profile

A-0 to 13 inches; loam
Bt1-13 to 25 inches; clay loam
Bt2-25 to 43 inches; clay loam
Bt3-43 to 61 inches; clay loam

Minor Components

Arand very gravelly sandy loam and similar soils

Composition: 0 to 3 percent
Slope: 1 to 5 percent
Geomorphic setting: Flood plains
Hillgate loam and similar soils
Composition: 0 to 3 percent
Slope: 1 to 5 percent
Geomorphic setting:Terraces

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Channels
Westfan gravelly loam and similar soils
Composition: 0 to 1 percent
Slope: 1 to 5 percent
Geomorphic setting: Fans

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

313-Saltcanyon loam, 5 to 9 percent slopes

Map Unit Setting

General location: Along the eastern edge of Bear Valley
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 600 to 1,450 feet (183 to 442 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 210 to 225 days

Composition

Saltcanyon loam-90 percent
Minor components-10 percent

Major Component Description

Saltcanyon loam

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 5 to 9 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: None

Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.8 inches (high)
Hydrologic properties
Present flooding: Rare
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-1
Nonirrigated:4e-1
Typical profile
A-0 to 13 inches; loam
Bt1-13 to 25 inches; clay loam
Bt2-25 to 43 inches; clay loam
Bt3-43 to 61 inches; clay loam

Minor Components

Westfan gravelly loam and similar soils

Composition: 0 to 4 percent
Slope: 1 to 5 percent
Geomorphic setting: Fans
Arand very gravelly sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting: Flood plains
Hillgate loam and similar soils
Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting:Terraces
Capay clay and similar soils
Composition: 0 to 1 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

315-Mallard clay loam, 2 to 5 percent slopes

Map Unit Setting

General location: Indian Valley
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 1,240 to 1,295 feet (378 to 396 meters)
Mean annual precipitation: 18 to 22 inches (458 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Mallard clay loam-90 percent
Minor components-10 percent

Major Component Description

Mallard clay Ioam
Geomorphic setting: The lower alluvial fans
Parent material: Alluvium
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 2 to 5 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 10.4 inches (very high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Moderately well drained
Altered hydrology: Water tables have been lowered by stream channel entrenchment.

Land capability classification

Irrigated: 2e-3
Nonirrigated: 4e-3
Typical profile
Ap-0 to 3 inches; clay loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 15 inches; clay
Bt3-15 to 28 inches; clay
C1-28 to 44 inches; clay loam
C2—44 to 60 inches; clay loam

Minor Components

Hillgate loam and similar soils

Composition: 0 to 4 percent
Slope: 2 to 5 percent
Geomorphic setting:Terraces
Saltcanyon loam and similar soils
Composition: 0 to 3 percent
Slope: 2 to 5 percent
Geomorphic setting: Alluvial fans
Arand very gravelly sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 2 to 5 percent
Geomorphic setting: Flood plains

Unnamed

Composition: 0 to 1 percent
Slope: 2 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Irrigated crops and livestock grazing
For information about management, see the "Use and Management" section of this publication.

316-Hillgate loam, 5 to 9 percent slopes Map Unit Setting

General location: Small areas in foothill valleys
MLRA: 14
Geomorphic setting:Terraces
Elevation: 400 to 1,500 feet (122 to 458 meters)
Mean annual precipitation: 16 to 22 inches (405 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Hillgate loam-90 percent
Minor components-10 percent

Major Component Description

Hillgate loam

Geomorphic setting:Terraces
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 5 to 9 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments:
None
Depth to restrictive feature: Abrupt textural change19 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-3
Typical profile
A1-0 to 3 inches; loam
A2-3 to 11 inches; loam
A3-11 to 19 inches; loam
2Bt1-19 to 37 inches; clay
2Bt2-37 to 52 inches; clay loam
2Bt3-52 to 62 inches; clay loam
2Bt4-62 to 72 inches; clay loam

Minor Components

Capay clay and similar soils

Composition: 0 to 4 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Corval loam and similar soils

Composition: 0 to 3 percent
Slope: 5 to 9 percent
Geomorphic setting: Flood plains and fans

Contra Costa loam and similar soils

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Millsholm loam and similar soils

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 9 percent

Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

320-Millsholm loam, 5 to 30 percent slopes

Map Unit Setting

General location: In Indian Valley and east of Highway
16, near the Yolo County boundary
MLRA: 15
Geomorphic setting: Hills
Elevation: 1,240 to 2,600 feet (378 to 793 meters)
Mean annual precipitation: 18 to 24 inches (458 to 610 millimeters)
Mean annual air temperature: 57 to 63 degrees F (14 to 17 degrees C)
Frost-free period: 185 to 210 days

Composition

Millsholm loam-85 percent
Minor components-15 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 5 to 30 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 10 percent
Slope: 5 to 30 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 5 to 30 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 30 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

329-Sehorn-Millsholm-Altamont complex, 15 to 30 percent slopes

Map Unit Setting

General location: Coast Range foothills near the Glenn County boundary
MLRA: 15
Geomorphic setting: Hills
Elevation: 360 to 435 feet (110 to 134 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees $F(16$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Sehorn silty clay-40 percent
Millsholm loam-30 percent
Altamont silty clay- 15 percent
Minor components-15 percent

Major Component Description

Sehorn silty clay

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.5 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-5
Typical profile
A-0 to 5 inches; silty clay
Bw-5 to 9 inches; silty clay
Bss1-9 to 19 inches; silty clay
Bss2-19 to 26 inches; gravelly silty clay
BC-26 to 35 inches; extremely gravelly silty clay
R-35 inches; unweathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None

Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class:Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6 e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Altamont silty clay

Geomorphic setting:The lower side slopes and northfacing slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered blue oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.9 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class:Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4e-5

Typical profile

A-0 to 3 inches; silty clay
Bw-3 to 9 inches; silty clay
Bss1-9 to 23 inches; silty clay
Bss2-23 to 35 inches; silty clay
BC1- 35 to 43 inches; very gravelly silty clay
BC2-43 to 49 inches; silty clay
Cr-49 inches; soft or weathered bedrock

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 8 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: Mountains and hills

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent Slope: 15 to 30 percent Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

330-Millsholm-Contra Costa complex, 15 to 30 percent slopes

Map Unit Setting

General location: Foothills near East Park Reservoir and south of Spring Valley
MLRA: 15
Geomorphic setting: Alluvial fans
Elevation: 1,200 to 1,400 feet (366 to 427 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)

Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Millsholm loam-60 percent
Contra Costa loam-25 percent
Minor components-15 percent

Major Component Description

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Contra Costa Ioam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4e-8
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Minor Components

Sehorn silty clay and similar soils

Composition: 0 to 5 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills
Saltcanyon loam and similar soils
Composition: 0 to 4 percent
Slope: 2 to 9 percent
Geomorphic setting: Alluvial fans

Altamont silty clay and similar soils

Composition: 0 to 3 percent
Slope: 15 to 30 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent

Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

331—Sehorn-Millsholm-Rock outcrop complex, 30 to 50 percent slopes

Map Unit Setting

General location: Foothills near the Glenn County boundary
MLRA: 15
Geomorphic setting: Alluvial fans
Elevation: 360 to 475 feet (110 to 146 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Sehorn silty clay-35 percent
Millsholm loam-30 percent
Rock outcrop-20 percent
Minor components-15 percent

Major Component Description

Sehorn silty clay

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.5 inches (low)
Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A- 0 to 5 inches; silty clay
Bw-5 to 9 inches; silty clay
Bss1-9 to 19 inches; silty clay
Bss2-19 to 26 inches; gravelly silty clay
BC-26 to 35 inches; extremely gravelly silty clay
R-35 inches; unweathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 50 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2—8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock
Rock outcrop
Geomorphic setting: Hills
Kind of rock: Sandstone and shale

Typical vegetation: Most areas are barren, but some areas have a few grasses.

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Very high
Surface features: Hard, exposed bedrock

Land capability classification

Irrigated: Not calculated Nonirrigated: 8

Minor Components

Altamont silty clay and similar soils
Composition: 0 to 6 percent
Slope: 30 to 50 percent
Geomorphic setting: The lower side slopes and northfacing slopes of hills

Contra Costa loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Saltcanyon loam and similar soils

Composition: 0 to 2 percent
Slope: 2 to 9 percent
Geomorphic setting: Alluvial fans

Capay clay and similar soils

Composition: 0 to 1 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

332-Millsholm-Rock outcrop association, 30 to 75 percent slopes

Map Unit Setting

General location: Foothills east of East Park Reservoir and foothills near the Glenn County boundary

Geomorphic setting: Alluvial fans
Elevation: 400 to 600 feet (122 to 183 meters)
Mean annual precipitation: 14 to 18 inches (355 to 458 millimeters)
Mean annual air temperature: 61 to 63 degrees F (16 to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam—50 percent
Rock outcrop-40 percent
Minor components-10 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Rock outcrop

Geomorphic setting: Hills
Kind of rock: Sandstone and shale

Typical vegetation: Most areas are barren, but some areas have a few grasses.

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: Very high
Surface features: Hard, exposed bedrock
Land capability classification
Irrigated: Not calculated
Nonirrigated: 8

Minor Components

Contra Costa loam and similar soils
Composition: 0 to 8 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of hills
Saltcanyon loam and similar soils
Composition: 0 to 1 percent
Slope: 2 to 9 percent
Geomorphic setting: Alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 75 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

334-Millsholm-Contra Costa association, 30 to 75 percent slopes

Map Unit Setting

General location: Foothill ridges
MLRA: 15
Geomorphic setting: Hills
Elevation: 275 to 1,750 feet (85 to 534 meters)
Mean annual precipitation: 14 to 24 inches (355 to 610 millimeters)
Mean annual air temperature: 57 to 63 degrees $F(14$ to 17 degrees C)
Frost-free period: 225 to 250 days

Composition

Millsholm loam-70 percent
Contra Costa loam-15 percent
Minor components- 15 percent

Major Component Description

Millsholm loam
Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 75 percent, southeast to west aspects
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Contra Costa Ioam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 75 percent, northeast to northwest aspects
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock Salinity: Not saline

Sodicity: Not sodic
Available water capacity: About 4.8 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A-0 to 3 inches; loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 16 inches; clay loam
Bt3-16 to 28 inches; clay
Bt4-28 to 35 inches; very gravelly clay loam
R-35 inches; unweathered bedrock

Minor Components

Sehorn silty clay and similar soils

Composition: 0 to 10 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 30 to 75 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 75 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

337-Millsholm-Saltcanyon association, 5 to 15 percent slopes

Map Unit Setting
General location: Foothills near Rail Canyon
MLRA: 14 and 15
Geomorphic setting: Alluvial fans
Elevation: 1,155 to 1,400 feet (353 to 427 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)

Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Millsholm loam-50 percent
Saltcanyon loam-35 percent
Minor components-15 percent

Major Component Description

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A—0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Saltcanyon loam

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: Medium

Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.8 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2e-1
Nonirrigated: 4e-1
Typical profile
A-0 to 13 inches; loam
Bt1-13 to 25 inches; clay loam
Bt2-25 to 43 inches; clay loam
Bt3-43 to 61 inches; clay loam

Minor Components

Contra Costa loam and similar soils

Composition: 0 to 5 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of hills
Westfan gravelly loam and similar soils
Composition: 0 to 4 percent
Slope: 1 to 5 percent
Geomorphic setting: Fans
Hillgate loam and similar soils
Composition: 0 to 3 percent
Slope: 5 to 15 percent
Geomorphic setting:Terraces

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 0 to 5 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 15 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

345-Skyhigh-Sleeper-Millsholm association, 15 to 30 percent slopes

Map Unit Setting

General location: Southwest corner of the county, between Highway 20 and Highway 16
MLRA: 15
Geomorphic setting: Hills and mountains
Elevation: 1,100 to 2,160 feet (336 to 659 meters)
Mean annual precipitation: 18 to 22 inches (458 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Skyhigh gravelly clay loam-40 percent
Sleeper clay loam-30 percent
Millsholm loam- 15 percent
Minor components-15 percent

Major Component Description

Skyhigh gravelly clay loam
Geomorphic setting: Mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 0 to 30 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.8 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-8
Typical profile
A-0 to 3 inches; loam

Bt1-3 to 8 inches; gravelly clay loam
Bt2-8 to 25 inches; gravelly clay
Bt3-25 to 37 inches; gravelly sandy clay loam
R-37 inches; unweathered bedrock

Sleeper clay loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.7 inches (high)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4e-8
Typical profile
A1-0 to 5 inches; clay loam
A2-5 to 9 inches; clay loam
Bt1-9 to 19 inches; clay
Bt2-19 to 35 inches; clay
Bt3-35 to 53 inches; clay loam
R-53 inches; unweathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None

Depth to restrictive feature: Bedrock (lithic) -10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6 e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Minor Components

Boar loam and similar soils

Composition: 0 to 10 percent
Slope: 15 to 30 percent
Geomorphic setting:Toeslopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

346-Skyhigh-Millsholm-Sleeper association, 30 to 50 percent slopes Map Unit Setting

General location: Southwest corner of the county, between Highway 20 and Highway 16

MLRA: 15
Geomorphic setting: Hills and mountains
Elevation: 800 to 2,160 feet (244 to 659 meters)
Mean annual precipitation: 18 to 22 inches (458 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Skyhigh gravelly clay loam-45 percent
Millsholm loam-20 percent
Sleeper clay loam-20 percent
Minor components-15 percent

Major Component Description

Skyhigh gravelly clay loam
Geomorphic setting: Mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 0 to 30 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) - 20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.8 inches (low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 3 inches; loam
Bt1-3 to 8 inches; gravelly clay loam
Bt2-8 to 25 inches; gravelly clay
Bt3-25 to 37 inches; gravelly sandy clay loam
R-37 inches; unweathered bedrock
Millsholm loam
Geomorphic setting: Side slopes of hills

Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Sleeper clay loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.7 inches (high)
Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A1-0 to 5 inches; clay loam
A2-5 to 9 inches; clay loam
Bt1-9 to 19 inches; clay
Bt2-19 to 35 inches; clay
Bt3-35 to 53 inches; clay loam
R-53 inches; unweathered bedrock

Minor Components

Boar loam and similar soils

Composition: 0 to 10 percent
Slope: 30 to 50 percent
Geomorphic setting: Toeslopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 30 to 50 percent Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

347-Boar-Sleeper complex, 15 to 30 percent slopes

Map Unit Setting

General location: Southwest corner of the county, between Highway 20 and Highway 16
MLRA: 15
Geomorphic setting: Hills
Elevation: 1,315 to 2,160 feet (402 to 659 meters)
Mean annual precipitation: 18 to 22 inches (458 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)

Frost-free period: 185 to 210 days

Composition

Boar loam-45 percent
Sleeper clay loam-40 percent
Minor components-15 percent

Major Component Description

Boar loam
Geomorphic setting:Toeslopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -60 to 80 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.9 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-3

Typical profile

A1-0 to 5 inches; loam
A2-5 to 12 inches; loam
Bt1-12 to 20 inches; clay loam
Bt2-20 to 37 inches; clay loam
Bt3-37 to 56 inches; clay
Btk-56 to 75 inches; clay loam

Sleeper clay loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.7 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e-3

Typical profile

A1-0 to 5 inches; clay loam
A2—5 to 9 inches; clay loam
Bt1-9 to 19 inches; clay
Bt2-19 to 35 inches; clay
Bt3-35 to 53 inches; clay loam
R-53 inches; unweathered bedrock
Minor Components
Millsholm loam and similar soils
Composition: 0 to 10 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 15 to 30 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

348-Boar-Sleeper complex, 30 to 50 percent slopes

Map Unit Setting

General location: Southwest corner of the county, between Highway 20 and Highway 16
MLRA: 15
Geomorphic setting: Hills
Elevation: 1,400 to 2,160 feet (427 to 659 meters)
Mean annual precipitation: 18 to 22 inches (458 to 560 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Boar loam-45 percent
Sleeper clay loam-40 percent
Minor components-15 percent

Major Component Description

Boar loam

Geomorphic setting:Toeslopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—60 to 80 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.9 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A1-0 to 5 inches; loam

A2-5 to 12 inches; loam
Bt1-12 to 20 inches; clay loam
Bt2-20 to 37 inches; clay loam
Bt3-37 to 56 inches; clay
Btk-56 to 75 inches; clay loam

Sleeper clay loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Blue oak, annual grasses, foothill pine, and ceanothus

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-40 to 60 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.7 inches (high)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6 e
Typical profile
A1-0 to 5 inches; clay loam
A2-5 to 9 inches; clay loam
Bt1-9 to 19 inches; clay
Bt2-19 to 35 inches; clay
Bt3- 35 to 53 inches; clay loam
R-53 inches; unweathered bedrock

Minor Components

Millsholm loam and similar soils

Composition: 0 to 10 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Rock outcrop

Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

350-Haploxererts, 30 to 50 percent slopes

Map Unit Setting

General location: Along Highway 20, west of its intersection with Highway 16
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,120 to 1,800 feet (342 to 549 meters)
Mean annual precipitation: 18 to 22 inches (458 to 559 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Haploxererts-80 percent
Minor components-20 percent

Major Component Description

Haploxererts

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 7.0 inches (moderate)

Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A1-0 to 5 inches; clay loam
A2-5 to 15 inches; gravelly clay loam
Bss-15 to 28 inches; clay
C1-28 to 39 inches; gravelly clay loam
C2-39 to 52 inches; very gravelly loam
$\mathrm{Cr}-52$ inches; soft or unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 10 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills
Okiota loam and similar soils
Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Henneke sandy loam and similar soils
Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

355-Venado clay, 0 to 2 percent slopes

Map Unit Setting

General location: Lowest areas in Bear Valley and west of Stonyford in Indian Valley
MLRA: 14
Geomorphic setting: Basin floors

Elevation: 1,075 to 1,450 feet (328 to 442 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Venado clay-80 percent
Minor components-20 percent

Major Component Description

Venado clay
Geomorphic setting: Basin floors
Parent material: Alluvium derived from serpentinite
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate: Very low
Surface features: Polygonal cracking pattern; the polygons are approximately 24 inches in diameter.
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.6 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Altered hydrology: Water tables have been lowered by stream channel entrenchment. Prior to 1900, dynamite was used to remove rock restrictions in the lower part of Bear Valley along Bear Creek, resulting in downcutting of Bear Creek and feeder streams as the bed level changed.

Land capability classification

Irrigated: 3w-9
Nonirrigated: 4w-9
Typical profile
Ap-0 to 3 inches; clay
A-3 to 13 inches; clay
Bss-13 to 30 inches; clay
Btk1-30 to 38 inches; silty clay

Btk2-38 to 53 inches; silty clay loam
BCtk—53 to 61 inches; clay loam Ab-61 to 69 inches; clay

Minor Components

Venado clay, wet, and similar soils
Composition: 0 to 14 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Capay clay and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Leesville clay loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting: Alluvial fans

Bearvalley gravelly sandy loam and similar soils

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, nonirrigated crops, and irrigated pasture
For information about management, see the "Use and Management" section of this publication.

360-Bearvalley gravelly sandy loam, 2 to 5 percent slopes

Map Unit Setting

General location: South end of Bear Valley
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 1,300 to 1,450 feet (397 to 442 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Bearvalley gravelly sandy loam-85 percent

Minor components-15 percent

Major Component Description

Bearvalley gravelly sandy loam
Geomorphic setting: Alluvial fans
Parent material: Alluvium derived from serpentinite
Typical vegetation: Annual grasses and forbs
Properties and qualities
Slope: 2 to 5 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.1 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: 4e-9
Nonirrigated: 4e-9
Typical profile
A1-0 to 5 inches; gravelly sandy loam
A2-5 to 20 inches; very gravelly sandy loam
A3-20 to 34 inches; very gravelly sandy loam
2C1-34 to 60 inches; very gravelly loamy sand
2C2—60 to 75 inches; extremely gravelly loamy sand

Minor Components

Venado clay and similar soils

Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors
Leesville clay loam and similar soils
Composition: 0 to 4 percent
Slope: 2 to 5 percent
Geomorphic setting: Alluvial fans

Unnamed

Composition: 0 to 1 percent
Slope: 2 to 5 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, irrigated pasture, and nonirrigated crops
For information about management, see the "Use and Management" section of this publication.

365—Leesville clay loam, 2 to 5 percent slopes

Map Unit Setting

General location: West side of Bear Valley
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 1,075 to 1,500 feet (328 to 458 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Leesville clay loam- 85 percent
Minor components-15 percent

Major Component Description

Leesville clay loam
Geomorphic setting: Alluvial fans
Parent material: Alluvium derived from serpentinite
Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 2 to 5 percent
Runoff rate: Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.0 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated:2e-9
Nonirrigated:4e-9

Typical profile

A1-0 to 3 inches; clay loam
A2-3 to 16 inches; clay loam
A3-16 to 21 inches; clay loam
2C1-21 to 30 inches; gravelly sandy loam
3C2-30 to 46 inches; very gravelly loamy sand
3C3-46 to 60 inches; extremely gravelly loamy sand

Minor Components

Bearvalley gravelly sandy loam and similar soils

Composition: 0 to 8 percent
Slope: 2 to 5 percent
Geomorphic setting: Alluvial fans
Venado clay and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 2 to 5 percent Geomorphic setting: Channels

Venado clay, wet, and similar soils

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Use and Management

Major uses: Livestock grazing, irrigated pasture, and nonirrigated crops
For information about management, see the "Use and Management" section of this publication.

366-Leesville clay loam, 0 to 2 percent slopes

Map Unit Setting

General location: West side of Bear Valley
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 1,075 to 1,500 feet (328 to 458 meters)
Mean annual precipitation: 18 to 20 inches (458 to 510 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Leesville clay loam-85 percent Minor components-15 percent

Major Component Description

Leesville clay loam
Geomorphic setting: Alluvial fans
Parent material: Alluvium derived from serpentinite Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 0 to 2 percent
Runoff rate:Very low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.0 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: 2s-9
Nonirrigated: 4s-9
Typical profile
A1-0 to 3 inches; clay loam
A2-3 to 16 inches; clay loam
A3-16 to 21 inches; clay loam
2C1-21 to 30 inches; gravelly sandy loam
3C2-30 to 46 inches; very gravelly loamy sand
3C3-46 to 60 inches; extremely gravelly loamy sand

Minor Components

Bearvalley gravelly sandy loam and similar soils
Composition: 0 to 8 percent
Slope: 0 to 2 percent
Geomorphic setting: Alluvial fans
Venado clay and similar soils
Composition: 0 to 5 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Channels

Venado clay, wet, and similar soils
Composition: 0 to 1 percent
Slope: 0 to 2 percent
Geomorphic setting: Basin floors

Use and Management

Major uses: Livestock grazing, irrigated pasture, and nonirrigated crops
For information about management, see the "Use and Management" section of this publication.

370—Livermore very gravelly loam, 5 to 9 percent slopes

Map Unit Setting

General location: North end of Bear Valley, west of Leesville
MLRA: 14
Geomorphic setting: Alluvial fans
Elevation: 1,300 to 1,500 feet (397 to 458 meters)
Mean annual precipitation: 19 to 21 inches (483 to 533 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Livermore very gravelly loam-90 percent
Minor components-10 percent

Major Component Description

Livermore very gravelly loam

Geomorphic setting: Alluvial fans
Parent material: Alluvium
Typical vegetation: Blue oak and annual grasses with foothill pine and ceanothus

Properties and qualities

Slope: 5 to 9 percent
Runoff rate: Low
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.1 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted

Natural drainage class: Well drained
Land capability classification
Irrigated: 4s-4
Nonirrigated: 4s-4
Typical profile
Ap-0 to 7 inches; very gravelly loam
Bw1-7 to 19 inches; very gravelly loam
Bw2-19 to 41 inches; very gravelly sandy clay loam
C-41 to 63 inches; very gravelly sandy loam

Minor Components

Saltcanyon loam and similar soils

Composition: 0 to 7 percent
Slope: 5 to 9 percent
Geomorphic setting: Alluvial fans

Capay clay and similar soils

Composition: 0 to 2 percent
Slope: 5 to 9 percent
Geomorphic setting: Basin floors

Unnamed

Composition: 0 to 1 percent
Slope: 5 to 9 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing

For information about management, see the "Use and Management" section of this publication.

371—Buttes-Millsholm complex, 30 to 50 percent slopes

Map Unit Setting

General location: The Bear Valley Buttes
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,300 to 2,200 feet (397 to 671 meters)
Mean annual precipitation: 19 to 22 inches (483 to 559 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 210 days

Composition

Buttes gravelly sandy loam-50 percent
Millsholm loam-35 percent
Minor components-15 percent

Major Component Description

Buttes gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Conglomerate
Typical vegetation: Blue oak and annual grasses with foothill pine and ceanothus

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments:
0 to 20 percent (medium, well rounded pebbles)
Depth to restrictive feature: Bedrock (paralithic) -20 to 40 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.7 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A1-0 to 2 inches; gravelly sandy loam
A2-2 to 7 inches; gravelly sandy clay loam
$\mathrm{Bt}-7$ to 12 inches; very gravelly sandy clay loam
BCt-12 to 19 inches; very gravelly sandy clay loam
C-19 to 24 inches; very gravelly sandy loam
$\mathrm{Cr}-24$ inches; soft or weathered bedrock

Millsholm loam

Geomorphic setting: Side slopes of hills
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Annual grasses and scattered oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -10 to 20 inches
Slowest permeability class: Moderate above the bedrock

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.1 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; loam
Bw1-2 to 8 inches; loam
Bw2-8 to 14 inches; gravelly sandy clay loam
R-14 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 10 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Contra Costa loam and similar soils

Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of hills

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major use: Livestock grazing
For information about management, see the "Use and Management" section of this publication.

519—Stonyford-Guenoc complex, 5 to 15 percent slopes

Map Unit Setting

General location: The lower Coast Range, west of Stonyford
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,120 to 2,795 feet (342 to 853 meters)
Mean annual precipitation: 18 to 28 inches (458 to 711 millimeters)

Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 225 days

Composition

Stonyford gravelly loam-50 percent
Guenoc loam-30 percent
Minor components-20 percent

Major Component Description

Stonyford gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from basalt Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4e

Typical profile

A-0 to 3 inches; gravelly loam
Bt1-3 to 7 inches; gravelly clay loam
Bt2—7 to 14 inches; gravelly clay loam
R-14 inches; unweathered bedrock

Guenoc loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from basalt
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 5 to 15 percent
Runoff rate: High

Percentage of the surface covered by rock fragments:
10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.9 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 3e-8
Typical profile
A1-0 to 4 inches; loam
A2-4 to 9 inches; loam
Bt1-9 to 18 inches; clay loam
Bt2-18 to 31 inches; clay
R-31 inches; unweathered bedrock

Minor Components

Etsel gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of mountains
Marpa very gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of mountains
Henneke sandy loam and similar soils
Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Maymen sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains
Montara gravelly sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 5 to 15 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent

Slope: 5 to 15 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

520-Stonyford-Guenoc complex, 15 to 30 percent slopes

Map Unit Setting

General location: The lower Coast Range, west of Stonyford
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,120 to 2,795 feet (342 to 853 meters)
Mean annual precipitation: 18 to 28 inches (458 to 711 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C$)$
Frost-free period: 185 to 225 days

Composition

Stonyford gravelly loam-65 percent
Guenoc loam-15 percent
Minor components-20 percent

Major Component Description
 Stonyford gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from basalt Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) -10 to 20 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4e
Typical profile
A-0 to 3 inches; gravelly loam
Bt1-3 to 7 inches; gravelly clay loam
Bt2—7 to 14 inches; gravelly clay loam
R-14 inches; unweathered bedrock

Guenoc loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from basalt
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.9 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 3e-8
Typical profile
A1-0 to 4 inches; loam
A2—4 to 9 inches; loam
Bt1-9 to 18 inches; clay loam
Bt2-18 to 31 inches; clay
R-31 inches; unweathered bedrock

Minor Components

Etsel gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of mountains
Marpa very gravelly sandy loam and similar soils

Composition: 0 to 5 percent

Slope: 15 to 30 percent

Geomorphic setting: Side slopes of mountains

Henneke sandy loam and similar soils

Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Maymen sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains

Montara gravelly sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

521—Stonyford-Guenoc complex, 30 to 50 percent slopes

Map Unit Setting

General location: The lower Coast Range, west of Stonyford
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,120 to 2,795 feet (342 to 853 meters)
Mean annual precipitation: 18 to 28 inches (458 to 711 millimeters)
Mean annual air temperature: 57 to 61 degrees F (14 to 16 degrees C)
Frost-free period: 185 to 225 days

Composition

Stonyford gravelly loam-65 percent
Guenoc loam-15 percent
Minor components-20 percent

Major Component Description

Stonyford gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from basalt
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 4e
Typical profile
A-0 to 3 inches; gravelly loam
Bt1-3 to 7 inches; gravelly clay loam
Bt2—7 to 14 inches; gravelly clay loam
R-14 inches; unweathered bedrock

Guenoc loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from basalt
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.9 inches (low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted

Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 3e-8
Typical profile
A1-0 to 4 inches; loam
A2-4 to 9 inches; loam
Bt1-9 to 18 inches; clay loam
Bt2—18 to 31 inches; clay
R-31 inches; unweathered bedrock

Minor Components

Etsel gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Marpa very gravelly sandy loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Henneke sandy loam and similar soils

Composition: 0 to 4 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Maymen sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains
Montara gravelly sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Unnamed
Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

524—Arand-Riverwash complex, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

General location: Along creeks in the lower Coast
Range and in Indian Valley
MLRA: 14
Geomorphic setting: Flood plains
Elevation: 1,245 to 2,000 feet (381 to 610 meters)
Mean annual precipitation: 19 to 28 inches (485 to 710 millimeters)
Mean annual air temperature: 57 to 61 degrees $F(14$ to 16 degrees C)
Frost-free period: 185 to 225 days

Composition

Arand very gravelly sandy loam, frequently flooded65 percent
Riverwash- 25 percent
Minor components-10 percent

Major Component Description

Arand very gravelly sandy loam, frequently flooded

Geomorphic setting: Flood plains
Parent material: Alluvium
Typical vegetation: Sparse vegetation; scattered willows, annual grasses, and forbs in some areas

Properties and qualities

Slope: 0 to 2 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.0 inches (low)
Hydrologic properties
Present flooding: Frequent
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6w

Typical profile

A-0 to 8 inches; very gravelly sandy loam

C1-8 to 18 inches; very gravelly sandy loam
C2-18 to 24 inches; very gravelly sandy loam
C3-24 to 65 inches; very gravelly sand

Riverwash

Geomorphic setting: Channels
Kind of material: Alluvium
Typical vegetation: Sparse vegetation; scattered willows, annual grasses, and forbs in some areas

Properties and qualities

Slope: 0 to 2 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments:
10 to 80 percent (coarse, well rounded pebbles)
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.9 inches (low)
Hydrologic properties
Present flooding: Frequent
Present ponding: None
Current water table: Present
Natural drainage class: Poorly drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 8

Minor Components

Maywood gravelly loam, occasionally flooded, and similar soils

Composition: 0 to 6 percent
Slope: 0 to 2 percent
Geomorphic setting: Flood plains
Arbuckle sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 0 to 2 percent
Geomorphic setting:Terraces

Unnamed

Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

526-Etsel-Maymen-Marpa association, 30 to 50 percent slopes

Map Unit Setting

General location: The lower Coast Range MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,695 to 3,500 feet (518 to 1,067 meters)
Mean annual precipitation: 30 to 40 inches (765 to 1,015 millimeters)
Mean annual air temperature: 54 to 57 degrees F (12 to 14 degrees C)
Frost-free period: 150 to 210 days

Composition

Etsel gravelly sandy loam-30 percent
Maymen sandy loam-30 percent
Marpa very gravelly sandy loam-20 percent
Minor components-20 percent

Major Component Description

Etsel gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—4 to 10 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.5 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 3 inches; gravelly sandy loam

A2-3 to 10 inches; very gravelly sandy loam
R-10 inches; unweathered bedrock

Maymen sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with scrub oak, poison oak, buckbrush, and annual grasses

Properties and qualities

Slope: 30 to 50 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) -10 to 18 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A-0 to 3 inches; sandy loam
Bw-3 to 16 inches; gravelly sandy loam
R-16 inches; unweathered bedrock

Marpa very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 20 to 40 inches
Slowest permeability class: Moderately slow

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oe- 0 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; very gravelly sandy loam Bt1-5 to 14 inches; very gravelly sandy clay loam
Bt2-14 to 25 inches; very gravelly sandy clay loam R-25 inches; unweathered bedrock

Minor Components

Henneke sandy loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Okiota loam and similar soils
Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Rock outcrop

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Goulding gravelly loam and similar soils

Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Neuns very gravelly loam and similar soils
Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

527-Maymen-Etsel-Speaker association, 30 to 50 percent slopes

Map Unit Setting

General location: On Walker Ridge, along the Lake County boundary
MLRA: 15
Geomorphic setting: Mountains
Elevation: 2,000 to 4,000 feet (610 to 1,220 meters)
Mean annual precipitation: 35 to 50 inches (890 to 1,270 millimeters)
Mean annual air temperature: 52 to 55 degrees F (11 to 13 degrees C)
Frost-free period: 130 to 180 days

Composition

Maymen sandy loam- 35 percent
Etsel gravelly sandy loam-30 percent
Speaker gravelly loam-20 percent
Minor components-15 percent

Major Component Description
 Maymen sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with scrub oak, poison oak, buckbrush, and annual grasses

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 18 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None

Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A-0 to 3 inches; sandy loam
Bw-3 to 16 inches; gravelly sandy loam
R-16 inches; unweathered bedrock
Etsel gravelly sandy loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-4 to 10 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.5 inch (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 3 inches; gravelly sandy loam
A2-3 to 10 inches; very gravelly sandy loam
R-10 inches; unweathered bedrock

Speaker gravelly loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with some mixed conifers and hardwoods on north-facing slopes

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-20 to 40 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oi-0 inches; slightly decomposed plant material
A-0 to 10 inches; gravelly loam
Bt1-10 to 17 inches; gravelly clay loam
Bt2—17 to 26 inches; gravelly clay loam
Cr-26 inches; soft or weathered bedrock

Minor Components

Goulding gravelly loam and similar soils

Composition: 0 to 6 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Rock outcrop
Composition: 0 to 6 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Neuns very gravelly loam and similar soils

Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, watershed, and timber production

For information about management, see the "Use and Management" section of this publication.

528-Maymen-Etsel-Snook complex, 30 to 75 percent slopes

Map Unit Setting

General location: Walker Ridge area
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,495 to 4,000 feet (457 to 1,220 meters)
Mean annual precipitation: 30 to 50 inches (765 to 1,270 millimeters)
Mean annual air temperature: 52 to 57 degrees F (11 to 14 degrees C)
Frost-free period: 135 to 185 days
Composition
Maymen sandy loam- 35 percent Etsel gravelly sandy loam-25 percent
Snook gravelly sandy loam-25 percent
Minor components- 15 percent
Major Component Description

Maymen sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with scrub oak, poison oak, buckbrush, and annual grasses

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 18 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained
Land capability classification
Irrigated: Not calculated

Nonirrigated:7e

Typical profile

A-0 to 3 inches; sandy loam
Bw-3 to 16 inches; gravelly sandy loam
R-16 inches; unweathered bedrock
Etsel gravelly sandy loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-4 to 10 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.5 inch (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A1-0 to 3 inches; gravelly sandy loam
A2-3 to 10 inches; very gravelly sandy loam
$\mathrm{R}-10$ inches; unweathered bedrock

Snook gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with widely scattered hardwoods and annual grasses

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 20 to 80 percent (coarse, angular pebbles)

Depth to restrictive feature: Bedrock (lithic)—4 to 10 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.6 inch (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated:7e
Typical profile
A1-0 to 1 inch; gravelly sandy loam
A2-1 to 8 inches; gravelly sandy loam
R-8 inches; unweathered bedrock

Minor Components

Mayacama gravelly coarse sandy loam and similar soils

Composition: 0 to 6 percent
Slope: 30 to 75 percent
Geomorphic setting: Mountains
Henneke sandy loam and similar soils
Composition: 0 to 4 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains
Okiota loam and similar soils
Composition: 0 to 4 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

529—Maymen-Etsel-Mayacama complex, 30 to 75 percent slopes

Map Unit Setting

General location: Walker Ridge area
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,495 to 4,000 feet (457 to 1,220 meters)
Mean annual precipitation: 30 to 50 inches (765 to 1,270 millimeters)
Mean annual air temperature: 54 to 57 degrees F (12 to 14 degrees C)
Frost-free period: 135 to 180 days

Composition

Maymen sandy loam-35 percent
Etsel gravelly sandy loam-30 percent
Mayacama gravelly coarse sandy loam-20 percent
Minor components-15 percent

Major Component Description

Maymen sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs with scrub oak, poison oak, buckbrush, and annual grasses

Properties and qualities

Slope: 30 to 75 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 18 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A-0 to 3 inches; sandy loam
Bw-3 to 16 inches; gravelly sandy loam
R-16 inches; unweathered bedrock

Etsel gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Shrubs, mainly chamise

Properties and qualities

Slope: 30 to 75 percent, east to west aspects
Runoff rate: Medium
Percentage of the surface covered by rock fragments:
10 to 50 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—4 to 10 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.5 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 3 inches; gravelly sandy loam
A2-3 to 10 inches; very gravelly sandy loam
R-10 inches; unweathered bedrock
Mayacama gravelly coarse sandy loam
Geomorphic setting: Mountains
Parent material: Residuum weathered from schist Typical vegetation: Shrubs with some mixed conifers and hardwoods on north-facing slopes

Properties and qualities

Slope: 30 to 75 percent

Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Dense material-30 inches; bedrock (lithic)-20 to 40 inches

Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.1 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 10 inches; gravelly coarse sandy loam Bw1-10 to 21 inches; gravelly sandy clay loam Bw2-21 to 30 inches; very gravelly sandy clay loam
Cd-30 to 37 inches; very gravelly sandy loam
R-37 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 5 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains and hills

Snook gravelly sandy loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains
Henneke sandy loam and similar soils
Composition: 0 to 2 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains

Montara gravelly sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of mountains
Unnamed
Composition: 0 to 1 percent
Slope: 30 to 75 percent
Geomorphic setting: Side slopes of channels

Use and Management

Major uses:Wildlife habitat, recreation, and watershed

For information about management, see the "Use and Management" section of this publication.

542-Okiota-Dubakella-Henneke complex, 15 to 50 percent slopes

Map Unit Setting

General location: Walker Ridge area, on the Lake County boundary
MLRA: 15
Geomorphic setting: Mountains
Elevation: 2,200 to 4,000 feet (671 to 1,220 meters)
Mean annual precipitation: 35 to 50 inches (890 to 1,270 millimeters)
Mean annual air temperature: 48 to 59 degrees F (9 to 15 degrees C)
Frost-free period: 160 to 185 days

Composition

Okiota loam-35 percent
Dubakella gravelly clay loam-25 percent
Henneke sandy loam-25 percent
Minor components- 15 percent

Major Component Description

Okiota loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments:
10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class:Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated:7e

Typical profile

A-0 to 5 inches; loam
Bt1-5 to 8 inches; clay loam
Bt2-8 to 15 inches; clay
R-15 inches; bedrock

Dubakella gravelly clay loam

Geomorphic setting: North-facing side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 20 to 80 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.0 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6 e

Typical profile

A-0 to 3 inches; gravelly clay loam
$\mathrm{Bt}-3$ to 10 inches; very gravelly clay
Btss1-10 to 16 inches; very gravelly clay
Btss2-16 to 26 inches; very gravelly clay
R-26 inches; unweathered bedrock

Henneke sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High

Percentage of the surface covered by rock fragments:
20 to 80 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.0 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oi-O inches; slightly decomposed plant material
A-0 to 4 inches; sandy loam
Bt1-4 to 7 inches; extremely gravelly clay loam
Bt2-7 to 16 inches; extremely gravelly clay
R-16 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 10 percent
Slope: 15 to 50 percent
Geomorphic setting: Mountains and hills
Montara gravelly sandy loam and similar soils
Composition: 0 to 4 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

545-Henneke-Montara-Rock outcrop complex, 15 to 50 percent slopes

Map Unit Setting
General location: The lower Coast Range, south of Stonyford

MLRA: 15
Geomorphic setting: Mountains
Elevation: 900 to 4,000 feet (275 to 1,220 meters)
Mean annual precipitation: 18 to 50 inches (458 to 1,270 millimeters)
Mean annual air temperature: 48 to 61 degrees F (9 to 16 degrees C)
Frost-free period: 160 to 210 days

Composition

Henneke sandy loam-40 percent
Montara gravelly sandy loam-30 percent
Rock outcrop- 15 percent
Minor components-15 percent

Major Component Description

Henneke sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: Very high
Percentage of the surface covered by rock fragments:
20 to 80 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.0 inch (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7 e
Typical profile
Oi-0 inches; slightly decomposed plant material
A-0 to 4 inches; sandy loam
Bt1-4 to 7 inches; extremely gravelly clay loam
Bt2-7 to 16 inches; extremely gravelly clay
R -16 inches; unweathered bedrock

Montara gravelly sandy loam

Geomorphic setting: Side slopes of mountains

Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine
Properties and qualities
Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 0.9 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated:7e
Typical profile
A1-0 to 6 inches; gravelly sandy loam
A2-6 to 10 inches; gravelly sandy loam
R -10 inches; unweathered bedrock
Rock outcrop
Geomorphic setting: Mountains
Kind of rock: Serpentinite
Typical vegetation: Mostly barren; a few shrubs

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High

Land capability classification

Irrigated: Not calculated
Nonirrigated: 8

Minor Components

Okiota loam and similar soils
Composition: 0 to 12 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains
Dubakella gravelly clay loam and similar soils
Composition: 0 to 2 percent

Slope: 15 to 50 percent
Geomorphic setting: North-facing side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

548-Henneke-Okiota complex, 30 to 50 percent slopes

Map Unit Setting

General location: East side of Walker Ridge
MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,400 to 3,000 feet (427 to 915 meters)
Mean annual precipitation: 24 to 32 inches (610 to 813 millimeters)
Mean annual air temperature: 55 to 61 degrees F (13 to 16 degrees C)
Frost-free period: 180 to 200 days

Composition

Henneke sandy loam-45 percent
Okiota loam-35 percent
Minor components-20 percent

Major Component Description

Henneke sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 20 to 80 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.0 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
$\mathrm{Oi}-0$ inches; slightly decomposed plant material
A-0 to 4 inches; sandy loam
Bt1-4 to 7 inches; extremely gravelly clay loam
Bt2-7 to 16 inches; extremely gravelly clay
R-16 inches; unweathered bedrock

Okiota loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oi-0 inches; slightly decomposed plant material
A-0 to 10 inches; gravelly loam
Bt1-10 to 17 inches; gravelly clay loam
Bt2-17 to 26 inches; gravelly clay loam
Cr-26 inches; soft or weathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains

Dubakella gravelly clay loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: North-facing side slopes of mountains

Montara gravelly sandy loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed
For information about management, see the "Use and Management" section of this publication.

549—Henneke-Okiota complex, 50 to 75 percent slopes

Map Unit Setting
General location: East side of Walker Ridge MLRA: 15
Geomorphic setting: Mountains
Elevation: 1,600 to 3,300 feet (488 to 1,007 meters)
Mean annual precipitation: 25 to 34 inches (635 to 864 millimeters)
Mean annual air temperature: 55 to 61 degrees F (13 to 16 degrees C)
Frost-free period: 180 to 210 days

Composition

Henneke sandy loam-45 percent
Okiota loam-35 percent
Minor components-20 percent

Major Component Description

Henneke sandy loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from serpentinite

Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 50 to 75 percent
Runoff rate:Very high
Percentage of the surface covered by rock fragments: 20 to 80 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.0 inch (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oi-O inches; slightly decomposed plant material
A-0 to 4 inches; sandy loam
Bt1-4 to 7 inches; extremely gravelly clay loam
Bt2-7 to 16 inches; extremely gravelly clay
R-16 inches; unweathered bedrock

Okiota loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from serpentinite
Typical vegetation: Shrubs, mainly manzanita, with leather oak, MacNab cypress, and foothill pine

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: Very high
Percentage of the surface covered by rock fragments: 10 to 40 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderately slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)
Hydrologic properties
Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7 e
Typical profile
Oi-O inches; slightly decomposed plant material
A-0 to 10 inches; gravelly loam
Bt1-10 to 17 inches; gravelly clay loam
Bt2-17 to 26 inches; gravelly clay loam
Cr-26 inches; soft or weathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 50 to 75 percent
Geomorphic setting: Mountains
Dubakella gravelly clay loam and similar soils
Composition: 0 to 5 percent
Slope: 50 to 75 percent
Geomorphic setting: North-facing side slopes of mountains

Montara gravelly sandy loam and similar soils
Composition: 0 to 5 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and watershed For information about management, see the "Use and Management" section of this publication.

557-Neuns-Bamtush-Speaker complex, 30 to 50 percent slopes
 Map Unit Setting

General location: Pine Ridge area, southeast of Letts Lake
MLRA: 5
Geomorphic setting: Mountains
Elevation: 2,200 to 3,500 feet (671 to 1,068 meters)
Mean annual precipitation: 35 to 50 inches (889 to 1,270 millimeters)

Mean annual air temperature: 50 to 54 degrees F (10 to 12 degrees C)
Frost-free period: 130 to 160 days

Composition

Neuns very gravelly loam- 35 percent
Bamtush very gravelly loam-30 percent
Speaker gravelly loam-20 percent
Minor components-15 percent

Major Component Description

Neuns very gravelly loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oe- 0 to 2 inches; moderately decomposed plant material
A-2 to 7 inches; very gravelly loam
$\mathrm{Bt}-7$ to 15 inches; very gravelly loam
BC-15 to 29 inches; extremely gravelly loam
R-29 inches; unweathered bedrock

Bamtush very gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist

Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-60 to 80 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.2 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oi-O to 1 inch; slightly decomposed plant material
A-1 to 9 inches; very gravelly loam
AB-9 to 25 inches; very gravelly loam
Bt1-25 to 39 inches; very gravelly clay loam
Bt2-39 to 49 inches; very gravelly sandy clay loam
$\mathrm{Bw}-49$ to 61 inches; very gravelly sandy clay loam
$2 \mathrm{Bt}-61$ to 68 inches; gravelly clay loam

Speaker gravelly loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from sandstone and shale
Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-20 to 40 inches
Slowest permeability class: Moderately slow above the bedrock

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 3.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oi-O inches; slightly decomposed plant material A-0 to 10 inches; gravelly loam
Bt 1 -10 to 17 inches; gravelly clay loam
Bt2-17 to 26 inches; gravelly clay loam
Cr -26 inches; soft or weathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains
Etsel gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Marpa very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Maymen sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses:Wildlife habitat, recreation, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

564-Fouts-Yorkville-Squawrock

 association, 15 to 50 percent slopes
Map Unit Setting

General location: North side of Stony Creek, near Fouts Springs
MLRA: 5
Geomorphic setting: Mountains
Elevation: 2,000 to 4,595 feet (610 to 1,402 meters)
Mean annual precipitation: 25 to 45 inches (635 to 1,143 millimeters)
Mean annual air temperature: 54 to 59 degrees F (12 to 15 degrees C)
Frost-free period: 130 to 180 days

Composition

Fouts gravelly loam-35 percent
Yorkville clay loam-35 percent
Squawrock gravelly loam-15 percent
Minor components-15 percent

Major Component Description

Fouts gravelly loam

Geomorphic setting: Convex side slopes on south aspects of mountains
Parent material: Residuum weathered from schist Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 4.0 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

A—0 to 6 inches; gravelly loam

Bt1-6 to 12 inches; very gravelly clay
Bt2-12 to 18 inches; very gravelly clay
Bt3-18 to 26 inches; very gravelly clay
R-26 inches; unweathered bedrock
Yorkville clay loam
Geomorphic setting: Landslides and the lower side slopes of mountains
Parent material: Residuum weathered from schist Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 15 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (paralithic)-60 to 80 inches
Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.0 inches (high)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; clay loam
Bt1-2 to 15 inches; clay loam
Bt2—15 to 40 inches; clay
Bt3-40 to 55 inches; clay loam
BC-55 to 60 inches; clay loam
Cr-60 inches; soft or weathered bedrock
Squawrock gravelly loam
Geomorphic setting: Side slopes on south aspects of mountains
Parent material: Residuum weathered from sandstone Typical vegetation: Annual grasses and forbs

Properties and qualities

Slope: 15 to 50 percent

Runoff rate: High
Percentage of the surface covered by rock fragments: 0 to 15 percent (coarse, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches

Slowest permeability class: Slow above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.6 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
A-0 to 2 inches; gravelly loam
Bt1-2 to 9 inches; very gravelly clay loam
Bt2-9 to 18 inches; very gravelly clay loam
Bt3-18 to 23 inches; gravelly clay
C-23 to 26 inches; gravelly clay
R-26 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 10 percent
Slope: 15 to 50 percent
Geomorphic setting: Mountains

Etsel gravelly sandy loam and similar soils

Composition: 0 to 4 percent
Slope: 15 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Livestock grazing, wildlife habitat, and watershed
For information about management, see the "Use and Management" section of this publication.

570-Endoaquolls, 0 to 2 percent slopes, frequently ponded

Map Unit Setting
General location: The lower Letts Valley and Summit Valley
MLRA: 5

Geomorphic setting: Mountain valleys
Elevation: 4,035 to 5,320 feet (1,231 to 1,622 meters)
Mean annual precipitation: 45 to 50 inches (1,143 to 1,270 millimeters)
Mean annual air temperature: 46 to 50 degrees F (8 to 10 degrees C)
Frost-free period: 110 to 160 days

Composition

Endoaquolls, frequently ponded-90 percent Minor components-10 percent

Major Component Description

Endoaquolls, frequently ponded
Geomorphic setting: Meadows in mountain valleys Parent material: Alluvium
Typical vegetation: Hydrophytic species with perennial grasses

Properties and qualities

Slope: 0 to 2 percent
Runoff: Negligible
Percentage of the surface covered by rock fragments: None
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 9.7 inches (high)

Hydrologic properties

Present flooding: None
Present ponding: Frequent
Current water table: Present
Natural drainage class: Very poorly drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 5w
Typical profile
A1-0 to 4 inches; silt loam
A2-4 to 15 inches; loam
2Bw1-15 to 24 inches; silty clay loam
2Bw2-24 to 40 inches; clay loam
3C1-40 to 55 inches; gravelly loam
3C2—55 to 60 inches; gravelly loam

Minor Components

Bamtush very gravelly loam and similar soils
Composition: 0 to 10 percent
Slope: 0 to 2 percent
Geomorphic setting: Side slopes of mountains

Use and Management

Major uses: Wildlife habitat, recreation, livestock grazing, and watershed
For information about management, see the "Use and Management" section of this publication.

590-Neuns-Marpa-Goulding complex, 30

 to 50 percent slopesMap Unit Setting
General location: High elevations on the Coast Range MLRA: 5
Geomorphic setting: Mountains
Elevation: 3,200 to 5,000 feet (976 to 1,525 meters)
Mean annual precipitation: 38 to 60 inches (976 to 1,525 millimeters)
Mean annual air temperature: 46 to 54 degrees F (8 to 12 degrees C)
Frost-free period: 110 to 160 days

Composition

Neuns very gravelly loam-35 percent
Marpa very gravelly sandy loam-30 percent
Goulding gravelly loam-20 percent
Minor components-15 percent

Major Component Description

Neuns very gravelly loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 7 inches; very gravelly loam
Bt-7 to 15 inches; very gravelly loam
BC—15 to 29 inches; extremely gravelly loam
R-29 inches; unweathered bedrock

Marpa very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak
Properties and qualities
Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 20 to 40 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; very gravelly sandy loam Bt1-5 to 14 inches; very gravelly sandy clay loam
Bt2-14 to 25 inches; very gravelly sandy clay loam R-25 inches; unweathered bedrock

Goulding gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist

Typical vegetation: Ceanothus and live oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oi-0 inches; slightly decomposed plant material
A-0 to 4 inches; gravelly loam
Bw1-4 to 8 inches; very gravelly loam
Bw2-8 to 13 inches; very gravelly loam
R-13 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills
Bamtush very gravelly loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Etsel gravelly sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Maymen sandy loam and similar soils

Composition: 0 to 2 percent
Slope: 30 to 50 percent

Geomorphic setting: Side slopes of mountains
Speaker gravelly loam and similar soils
Composition: 0 to 2 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

591-Neuns-Sheetiron-Goulding complex, 30 to 50 percent slopes

Map Unit Setting

General location: Along the western boundary of Colusa County, adjacent to Lake County, near Goat Mountains
MLRA: 5
Geomorphic setting: Mountains
Elevation: 3,200 to 5,000 feet (976 to 1,525 meters)
Mean annual precipitation: 40 to 60 inches (1,016 to 1,524 millimeters)
Mean annual air temperature: 46 to 54 degrees F (8 to 12 degrees C)
Frost-free period: 110 to 160 days

Composition

Neuns very gravelly loam-35 percent
Sheetiron gravelly sandy loam-30 percent
Goulding gravelly loam-20 percent
Minor components-15 percent

Major Component Description
 Neuns very gravelly loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities
Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None

Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 7 inches; very gravelly loam
Bt-7 to 15 inches; very gravelly loam
BC-15 to 29 inches; extremely gravelly loam
R-29 inches; unweathered bedrock

Sheetiron gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from mica schist
Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

Oe-0 to 1 inch; moderately decomposed plant material
A1-1 to 4 inches; gravelly sandy loam
A2-4 to 9 inches; very gravelly sandy loam
Bw1-9 to 18 inches; very gravelly sandy loam
Bw2-18 to 30 inches; extremely gravelly sandy loam R-30 inches; unweathered bedrock

Goulding gravelly loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist Typical vegetation: Ceanothus and live oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oi-O inches; slightly decomposed plant material A-0 to 4 inches; gravelly loam
Bw1-4 to 8 inches; very gravelly loam
Bw2-8 to 13 inches; very gravelly loam
R-13 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 8 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills
Bamtush very gravelly loam and similar soils
Composition: 0 to 3 percent

Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Marpa very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

592-Neuns-Goulding-Sheetiron complex, 50 to 75 percent slopes

Map Unit Setting

General location: Along the Lake County boundary, south of Snow Mountains
MLRA: 5
Geomorphic setting: Mountains
Elevation: 3,200 to 5,000 feet (976 to 1,525 meters)
Mean annual precipitation: 40 to 60 inches (1,016 to 1,524 millimeters)
Mean annual air temperature: 46 to 54 degrees F (8 to 12 degrees C)
Frost-free period: 110 to 160 days

Composition

Neuns very gravelly loam-35 percent
Goulding gravelly loam-25 percent
Sheetiron gravelly sandy loam-25 percent
Minor components-15 percent

Major Component Description

Neuns very gravelly loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None

Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class:Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 7 inches; very gravelly loam
Bt-7 to 15 inches; very gravelly loam
BC-15 to 29 inches; extremely gravelly loam
R-29 inches; unweathered bedrock
Goulding gravelly loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Ceanothus and live oak

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated:7e

Typical profile

Oi-0 inches; slightly decomposed plant material
A-0 to 4 inches; gravelly loam
Bw1-4 to 8 inches; very gravelly loam
Bw2-8 to 13 inches; very gravelly loam
R-13 inches; unweathered bedrock

Sheetiron gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from mica schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and
California black oak

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)—20 to 40 inches
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.8 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6 e

Typical profile

Oe-0 to 1 inch; moderately decomposed plant material
A1-1 to 4 inches; gravelly sandy loam
A2-4 to 9 inches; very gravelly sandy loam
Bw1-9 to 18 inches; very gravelly sandy loam
Bw2-18 to 30 inches; extremely gravelly sandy loam
R-30 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 8 percent
Slope: 50 to 75 percent
Geomorphic setting: Mountains and hills

Bamtush very gravelly loam and similar soils

Composition: 0 to 3 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of mountains
Marpa very gravelly sandy loam and similar soils
Composition: 0 to 3 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

596-Yollabolly-Rock outcrop-Freezeout complex, 50 to 75 percent slopes

Map Unit Setting

General location: Coast Range crest, along the boundaries of Lake and Glenn Counties

MLRA: 5

Geomorphic setting: Mountains
Elevation: 4,995 to 7,060 feet (1,524 to 2,152 meters)
Mean annual precipitation: 50 to 70 inches (1,270 to 1,778 millimeters)
Mean annual air temperature: 43 to 48 degrees F (6 to 9 degrees C)
Frost-free period: 90 to 130 days

Composition

Yollabolly very gravelly loam-40 percent
Rock outcrop- 35 percent
Freezeout very gravelly sandy loam-20 percent
Minor components-5 percent
Major Component Description
Yollabolly very gravelly loam
Geomorphic setting: The upper side slopes and ridgetops of mountains
Parent material: Residuum weathered from schist
Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High

Percentage of the surface covered by rock fragments:
10 to 40 percent (coarse pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.2 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 2 inches; very gravelly loam
A2-2 to 6 inches; very gravelly loam
C-6 to 17 inches; very gravelly loam
R-17 inches; unweathered bedrock

Rock outcrop

Geomorphic setting: Mountains
Kind of rock: Schist
Typical vegetation: Most areas are barren with a few scattered shrubs or grasses.
Properties and qualities
Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None

Land capability classification

Irrigated: Not calculated
Nonirrigated: 8

Freezeout very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches

Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.9 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated:7e
Typical profile
Oi-0 to 1 inch; slightly decomposed plant material A-1 to 6 inches; very gravelly sandy loam Bw1-6 to 17 inches; very gravelly sandy loam
Bw2-17 to 26 inches; very gravelly sandy loam R-26 inches; unweathered bedrock

Minor Components

Bamtush very gravelly loam and similar soils
Composition: 0 to 4 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

597-Yollabolly-Freezeout complex, 30 to 50 percent slopes

Map Unit Setting

General location: Coast Range crest, along the boundaries of Lake and Glenn Counties
MLRA: 5
Geomorphic setting: Mountains
Elevation: 4,995 to 7,060 feet (1,524 to 2,152 meters)
Mean annual precipitation: 50 to 70 inches (1,270 to 1,778 millimeters)
Mean annual air temperature: 43 to 48 degrees F (6 to 9 degrees C)
Frost-free period: 90 to 130 days

Composition

Yollabolly very gravelly loam-55 percent
Freezeout very gravelly sandy loam-30 percent Minor components-15 percent

Major Component Description

Yollabolly very gravelly loam

Geomorphic setting:The upper side slopes and ridgetops of mountains
Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 40 percent (fine, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)-10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.2 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

A1-0 to 2 inches; very gravelly loam
A2-2 to 6 inches; very gravelly loam
C-6 to 17 inches; very gravelly loam
R-17 inches; unweathered bedrock

Freezeout very gravelly sandy loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches

Slowest permeability class: Moderately rapid above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.9 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
Oi-O to 1 inch; slightly decomposed plant material A-1 to 6 inches; very gravelly sandy loam Bw1-6 to 17 inches; very gravelly sandy loam Bw2-17 to 26 inches; very gravelly sandy loam R-26 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills
Bamtush very gravelly loam and similar soils
Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

599—Freezeout-Yollabolly complex, 30 to 50 percent slopes
 Map Unit Setting
 General location: Coast Range crest, along the boundaries of Lake and Glenn Counties

MLRA: 5
Geomorphic setting: Mountains
Elevation: 4,995 to 7,060 feet (1,524 to 2,152 meters)
Mean annual precipitation: 50 to 70 inches (1,270 to 1,778 millimeters)
Mean annual air temperature: 43 to 48 degrees F (6 to 9 degrees C)
Frost-free period: 90 to 130 days

Composition

Freezeout very gravelly sandy loam-55 percent
Yollabolly very gravelly loam- 30 percent
Minor components-15 percent

Major Component Description

Freezeout very gravelly sandy loam

Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.9 inches (very low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7 e
Typical profile
Oi-O to 1 inch; slightly decomposed plant material
A-1 to 6 inches; very gravelly sandy loam
Bw1-6 to 17 inches; very gravelly sandy loam
Bw2-17 to 26 inches; very gravelly sandy loam
R-26 inches; unweathered bedrock
Yollabolly very gravelly loam
Geomorphic setting: The upper side slopes and ridgetops of mountains

Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Percentage of the surface covered by rock fragments: 10 to 40 percent (fine, angular pebbles)
Depth to restrictive feature: Bedrock (lithic)—10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.2 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated:7e
Typical profile
A1-0 to 2 inches; very gravelly loam
A2-2 to 6 inches; very gravelly loam
C-6 to 17 inches; very gravelly loam
R-17 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Bamtush very gravelly loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

600-Freezeout-Yollabolly association, 50 to 75 percent slopes

Map Unit Setting

General location: Coast Range crest, along the boundaries of Lake and Glenn Counties
MLRA: 5
Geomorphic setting: Mountains
Elevation: 4,995 to 7,060 feet (1,524 to 2,152 meters)
Mean annual precipitation: 50 to 70 inches (1,270 to 1,778 millimeters)
Mean annual air temperature: 43 to 48 degrees F (6 to 9 degrees C)
Frost-free period: 90 to 130 days

Composition

Freezeout very gravelly sandy loam-50 percent Yollabolly very gravelly loam- 35 percent
Minor components- 15 percent

Major Component Description

Freezeout very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderately rapid
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.9 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material A-1 to 6 inches; very gravelly sandy loam Bw1-6 to 17 inches; very gravelly sandy loam

Bw2-17 to 26 inches; very gravelly sandy loam R-26 inches; unweathered bedrock

Yollabolly very gravelly loam

Geomorphic setting:The upper side slopes and ridgetops of mountains
Parent material: Residuum weathered from schist Typical vegetation: White fir and red fir

Properties and qualities

Slope: 50 to 75 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments:
10 to 40 percent (fine, angular pebbles)
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderate above the bedrock
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.2 inches (very low)

Hydrologic properties

Present flooding: None

Present ponding: None
Current water table: None noted
Natural drainage class: Excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e
Typical profile
A1-0 to 2 inches; very gravelly loam
A2-2 to 6 inches; very gravelly loam
C-6 to 17 inches; very gravelly loam
R-17 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 9 percent
Slope: 50 to 75 percent
Geomorphic setting: Mountains and hills
Bamtush very gravelly loam and similar soils
Composition: 0 to 5 percent
Slope: 50 to 75 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 50 to 75 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

610-Neuns-Bamtush-Goulding association, 30 to 50 percent slopes Map Unit Setting

General location: High elevations on the Coast Range MLRA: 5
Geomorphic setting: Mountains
Elevation: 3,000 to 5,000 feet (915 to 1,525 meters)
Mean annual precipitation: 40 to 50 inches (1,016 to 1,270 millimeters)
Mean annual air temperature: 46 to 54 degrees F (8 to 12 degrees C)
Frost-free period: 125 to 180 days

Composition

Neuns very gravelly loam-40 percent
Bamtush very gravelly loam-25 percent
Goulding gravelly loam-20 percent
Minor components-15 percent

Major Component Description

Neuns very gravelly loam
Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -20 to 40 inches
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 7 inches; very gravelly loam
$\mathrm{Bt}-7$ to 15 inches; very gravelly loam
BC—15 to 29 inches; extremely gravelly loam
R-29 inches; unweathered bedrock

Bamtush very gravelly loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) -60 to 80 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.2 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 9 inches; very gravelly loam
$A B-9$ to 25 inches; very gravelly loam
Bt1-25 to 39 inches; very gravelly clay loam
Bt2-39 to 49 inches; very gravelly sandy clay loam
Bw-49 to 61 inches; very gravelly sandy clay loam
2Bt-61 to 68 inches; gravelly clay loam
Goulding gravelly loam
Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist

Typical vegetation: Ceanothus and live oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: Medium
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic) - 10 to 20 inches
Slowest permeability class: Moderate
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 1.3 inches (very low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Somewhat excessively drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 7e

Typical profile

Oi-0 inches; slightly decomposed plant material
A-0 to 4 inches; gravelly loam
Bw1-4 to 8 inches; very gravelly loam
Bw2-8 to 13 inches; very gravelly loam
R-13 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 6 percent
Slope: 30 to 50 percent
Geomorphic setting: Mountains and hills

Marpa very gravelly sandy loam and similar soils

Composition: 0 to 5 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Maymen sandy loam and similar soils

Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, watershed, and timber production
For information about management, see the "Use and Management" section of this publication.

650—Bamtush-Marpa complex, 15 to 30 percent slopes

Map Unit Setting

General location: East of Letts Lake, near the Trough Springs Ridge area
MLRA: 5
Geomorphic setting: Mountains
Elevation: 1,695 to 5,000 feet (518 to 1,525 meters)
Mean annual precipitation: 30 to 50 inches (765 to 1,270 millimeters)
Mean annual air temperature: 54 to 57 degrees F (12 to 14 degrees C)
Frost-free period: 125 to 210 days

Composition

Bamtush very gravelly loam- 55 percent Marpa very gravelly sandy loam-30 percent Minor components-15 percent

Major Component Description

Bamtush very gravelly loam
Geomorphic setting: Side slopes of mountains Parent material: Residuum weathered from schist Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 15 to 30 percent
Runoff rate: Medium
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-60 to 80 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.2 inches (moderate)

Hydrologic properties

Present flooding: None
Present ponding: None

Current water table: None noted Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4 e

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 9 inches; very gravelly loam
$A B-9$ to 25 inches; very gravelly loam
Bt1-25 to 39 inches; very gravelly clay loam
Bt2-39 to 49 inches; very gravelly sandy clay loam
Bw-49 to 61 inches; very gravelly sandy clay loam
$2 \mathrm{Bt}-61$ to 68 inches; gravelly clay loam

Marpa very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglasfir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 15 to 30 percent

Runoff rate: Medium
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)

Hydrologic properties

Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained

Land capability classification

Irrigated: Not calculated
Nonirrigated: 4 e
Typical profile
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; very gravelly sandy loam
Bt1- 5 to 14 inches; very gravelly sandy clay loam
Bt2-14 to 25 inches; very gravelly sandy clay loam

R-25 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 8 percent
Slope: 15 to 30 percent
Geomorphic setting: Mountains and hills
Goulding gravelly loam and similar soils
Composition: 0 to 3 percent
Slope: 15 to 30 percent
Geomorphic setting: Side slopes of mountains
Neuns very gravelly loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains

Unnamed

Composition: 0 to 1 percent
Slope: 15 to 30 percent
Geomorphic setting: Channels

Use and Management

Major uses: Wildlife habitat, recreation, and timber production
For information about management, see the "Use and Management" section of this publication.

651—Bamtush-Marpa complex, 30 to 50 percent slopes

Map Unit Setting

General location: East of Letts Lake, near the Trough Springs Ridge area
MLRA: 5
Geomorphic setting: Mountains
Elevation: 1,695 to 5,000 feet (518 to 1,525 meters)
Mean annual precipitation: 30 to 50 inches (765 to 1,270 millimeters)
Mean annual air temperature: 54 to 57 degrees F (12 to 14 degrees C)
Frost-free period: 125 to 210 days

Composition

Bamtush very gravelly loam- 55 percent Marpa very gravelly sandy loam-30 percent Minor components-15 percent

Major Component Description

Bamtush very gravelly loam
Geomorphic setting: Side slopes of mountains

Parent material: Residuum weathered from schist Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-60 to 80 inches
Slowest permeability class: Moderately slow
Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 5.2 inches (moderate)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 9 inches; very gravelly loam
AB-9 to 25 inches; very gravelly loam
Bt1-25 to 39 inches; very gravelly clay loam
Bt2-39 to 49 inches; very gravelly sandy clay loam
Bw-49 to 61 inches; very gravelly sandy clay loam
2Bt-61 to 68 inches; gravelly clay loam

Marpa very gravelly sandy loam

Geomorphic setting: Side slopes of mountains
Parent material: Residuum weathered from schist
Typical vegetation: Mixed conifers, including Douglas-
fir, ponderosa pine, sugar pine, incense cedar, and California black oak

Properties and qualities

Slope: 30 to 50 percent
Runoff rate: High
Surface features: None noted
Percentage of the surface covered by rock fragments: None
Depth to restrictive feature: Bedrock (lithic)-20 to 40 inches
Slowest permeability class: Moderately slow above the bedrock

Salinity: Not saline
Sodicity: Not sodic
Available water capacity: About 2.7 inches (low)
Hydrologic properties
Present flooding: None
Present ponding: None
Current water table: None noted
Natural drainage class: Well drained
Land capability classification
Irrigated: Not calculated
Nonirrigated: 6e
Typical profile
Oe- 0 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; very gravelly sandy loam
Bt1-5 to 14 inches; very gravelly sandy clay loam
Bt2-14 to 25 inches; very gravelly sandy clay loam
R-25 inches; unweathered bedrock

Minor Components

Rock outcrop

Composition: 0 to 8 percent

Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains and hills

Goulding gravelly loam and similar soils

Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Neuns very gravelly loam and similar soils
Composition: 0 to 3 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of mountains
Unnamed
Composition: 0 to 1 percent
Slope: 30 to 50 percent
Geomorphic setting: Side slopes of channels

Use and Management

Major uses: Wildlife habitat, recreation, and timber production
For information about management, see the "Use and Management" section of this publication.

652-Water

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soilrelated failures in land uses.

In preparing a soil survey, soil scientists and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture, as rangeland, and as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Crops and Pasture

General management needed for crops and pasture is suggested in this section. The estimated yields of the main crops are listed for each soil, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

Planners of management systems for individual fields or farms should consider the soil properties given in the description of each soil under the heading "Detailed Soil Map Units." General management factors and considerations are identified in this section. Specific information about soils and technical information can be obtained from the Colusa Resource Conservation District, the Natural Resources Conservation Service, or the University of California Cooperative Extension Service.

Major Management Factors

The management concerns affecting the use of the detailed map units in this survey area for irrigated crops are shown in table 5. The main concerns in managing irrigated cropland are conserving moisture, controlling wind erosion and water erosion, and maintaining soil fertility.

Soil moisture is conserved primarily by reducing the evaporation and runoff rates and increasing the water intake rate. Applying conservation tillage and conservation cropping systems, farming on the contour, stripcropping, establishing field windbreaks, and leaving crop residue on the surface conserve moisture.

Generally, a combination of several practices is needed to control wind erosion and water erosion. Conservation tillage, stripcropping, field windbreaks, tall grass barriers, contour farming, conservation cropping systems, crop residue management, diversions, and grassed waterways help to prevent excessive soil loss.

Measures that are effective in maintaining soil fertility include applying fertilizer, both organic and inorganic, including manure; incorporating crop residue or green manure crops into the soil; and using
proper crop rotations. Erosion control helps to prevent the loss of organic matter and plant nutrients and thus helps to maintain productivity, although the level of fertility can be reduced even in areas where erosion is controlled. All of the soils used for nonirrigated crops in this survey area respond well to applications of fertilizer.

Some of the limitations and hazards shown in table 5 cannot be easily overcome. These are channels, flooding, depth to bedrock, ponding, gullies, and lack of timely precipitation.

Additional limitations and hazards are as follows:
Abrupt textural change.-The soil has a loamy or coarser surface layer underlain by a clayey subsoil within a depth of 20 inches.

- Downward water movement and root growth are restricted by an abrupt textural change interface.
- Intensive irrigation management, crop selection, and nutrient management are needed for acceptable crop performance in the upper part of the soil.
- In areas where the water table is below a depth of 24 inches during the growing season, slip ploughing can invert the soil profile and thus interrupt the abrupt textural change interface.

Available water capacity.-The soil holds too little water for normal crop growth. The available water capacity is low or very low.

- Because the soil is droughty, applications of irrigation water should be light and frequent.
- Water should be applied in amounts that are sufficient to wet the root zone but are small enough to minimize the leaching of plant nutrients.

Calcium carbonate.-Excess calcium carbonate, generally more than 15 percent in the soil, restricts the growth of most plants.

- Applications of acidifying amendments lower pH and increase the availability of micronutrients in calcareous soils.

Cation-exchange capacity.-The cation-exchange capacity, generally 10 to $20 \mathrm{meq} / 100 \mathrm{gm}$, is low enough to restrict the growth of plants.

- The supply of available nutrients needed for acceptable plant performance can be enhanced by applications of fertilizer and/or soil amendments on soils with a low cation-exchange capacity.

Channeled.-The map unit has more than 5 percent channels.

- Leveling the channeled landscape may require deep cuts that will expose highly variable stratified substrata.

Clayey.-The soil surface is slippery and sticky when wet and is slow to dry.

- The soil can be easily cultivated only within a narrow range of moisture content.
- Soil crusting and cracking may damage emerging crops.

Compaction.-A process in which the rearrangement of soil grains decreases void space and brings the grains into closer contact with one another, thereby increasing the bulk density.

- Soil compaction can result from repeated equipment traffic. It reduces the rate of permeability and impairs root penetration.
- Ripping may be necessary to break up compaction pans.

Depth to bedrock.-The depth to bedrock is 20 inches or less.

- The depth to bedrock affects the suitability of deeprooted crops.
- If the bedrock is soft, deep ripping of this restrictive layer (where feasible) helps to overcome this limitation.

Depth to cemented pan.-Restrictive, dense, hard, somewhat impervious cemented soil material is near the surface, generally at a depth of 20 inches or less.

- The hardpan reduces the yield of deep-rooted crops.
- Where feasible, deep ripping of this restrictive layer can help to overcome this limitation.
- A tillage pan forms easily if the soil is tilled when wet.
- Chiseling or subsoiling breaks up the tillage pan.

Erosion, water.-The soil is easily eroded by water. See Slope for major management considerations.

Erosion, wind.-The soil is easily eroded by the wind.

- When the wind velocity is high in spring, the hazard of wind erosion can be reduced by using all crop residue to protect the surface and by minimizing tillage.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The risk of flooding can be reduced by levees and diversions.
- Most climatically adapted crops can be grown if the soil is protected from flooding late in spring and if a drainage system is installed.

Permeability, excessive.-The fast movement (in general, moderately rapid or faster) of water through the soil adversely affects the crop.

- Close management of irrigation water, plant
nutrients, and agricultural chemicals helps to prevent
the nutrient loss caused by leaching and the contamination ground water.

Permeability, restricted.-The slow movement of water through the soil adversely affects the crop.

- Most climatically adapted crops can be grown if the soil is protected from flooding late in spring and if a drainage system is installed.
- Water applications should be regulated so that the water does not stand on the surface and damage the crops.

Rock fragments.-The soil profile has enough rock fragments, generally 15 percent or more, to adversely affect the use of soil.

- The high percentage of rock fragments reduces the amount of moisture available for plant growth.
- Rock fragments on the surface cause rapid wear of tillage equipment.

Sandy.-The soil is soft and loose, droughty, and low in fertility or is too fine for use as gravel.

- Because the soil is droughty, applications of irrigation water should be light and frequent.
- Water should be applied in amounts that are sufficient to wet the root zone but are small enough to minimize the leaching of plant nutrients.
- The soil is subject to lateral seepage in wet years, when the water level is high.

Shrink-swell.-The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage plant roots.

- Irrigating after the crop is harvested helps to maintain adequate soil moisture until the fall rains begin and thus helps to prevent the formation of soil cracks and the damage to perennial roots caused by shrinking and swelling of the soil.

Slope.-The slope is steep enough (generally more than 2 percent) for special practices to be needed to ensure satisfactory performance of the soil.

- Sprinkler and drip irrigation systems are suitable. They permit the even, controlled application of water and reduce the runoff rate and the risk of erosion.
- All tillage should be on the contour or across the slope.
- If the soil is plowed in the fall, the hazards of runoff and erosion can be reduced by applying fertilizer and seeding a cover crop.
- Annual cultivation should be avoided on slopes of more than 15 percent.

Sodicity.-Excess exchangeable sodium, generally with an SAR of 6 or greater. The exchangeable sodium imparts poor physical properties that restrict the growth of plants.

- The content of toxic salts can be reduced by leaching, applying the proper amount of soil amendments, and returning crop residue to the soil.
- Intensive management is required to reduce the content of salts and maintain soil productivity.

Wetness.-The soil is wet, generally within a depth of 20 inches, during the period of desired use.

- Carefully appling irrigation water helps to prevent the buildup of a water table.
- Tile drainage can lower the water table if a suitable outlet is available.
- Deep-rooted crops are suitable in areas where natural drainage is adequate or a drainage system has been installed.

Major Management Measures

The soils in Colusa County that are suitable for irrigated crops, nonirrigated crops, and pasture can have a variety of limitations resulting from soil characteristics. Cultural and management practices can overcome most cropping limitations. They can minimize soil erosion, promote soil tilth, allow the efficient use of irrigation water, protect surface and ground water, and manage soil salts. Good farmland management can ensure sustained optimum productivity by maintaining favorable soil characteristics and soil fertility and by assisting in pest management.

Some of the more common farming practices and management techniques are chiseling and subsoiling, a conservation cropping sequence, conservation tillage, crop residue management, removal of excess water, control of surface water, toxic salt reduction, erosion control, irrigation water management, pasture management, and hayland management. Use of these and other applicable practices depends upon land use goals, soil characteristics or limitations, crop suitability, and economics. Some soil limitations cannot be mitigated or economically corrected; therefore, land use planning is essential for profitable land use and prevention of soil degradation.

Chiseling and subsoiling can improve or open dense or compacted soil layers, which are commonly caused by equipment use. Dense or compacted soil layers limit the effective rooting depth and affect soil water characteristics. Chiseling (less than 16 inches deep) and subsoiling (deeper than 16 inches) increase the pore space in the dense soil layers. They increase root penetration, enhance permeability and internal drainage, and prevent a perched water table. The soils most susceptible to compaction are Moonbend, Vina, and Westfan soils. Most of the soils used as cropland can develop tillage compaction layers through cultivation and/or tillage operations during periods when the susceptibility to compaction is high. Cultivation should be avoided when the soils are
excessively wet. If the soil moisture is near or above field capacity, soil strength is reduced and the soil is too wet for cultivation. Timing farming operations so that the soil is worked during periods of favorable soil moisture can minimize not only the formation of compaction layers but also the formation of clods. Because of intensive cultural practices and management requirements, some crops are more susceptible to soil compaction than others. In areas of the more susceptible crops, chiseling the field before planting the next crop could be advantageous.

Hillgate, Mallard, and Corbiere are examples of soils in which soil aeration and permeability can be temporarily improved by chiseling or subsoiling a clayey subsoil. The benefits are temporary because the clays eventually reform with less pore space when wet.

A conservation cropping system helps to maintain favorable soil conditions for good crop performance and sustained production. This approach involves consideration of all tillage practices, fertilizer programs, pest-control programs, and crop rotations. All inputs are evaluated and managed for optimum production with minimum soil degradation. Economic benefits are realized through reduced farming expenses and machinery costs. Intensive tillage practices reduce the amount of organic matter and destroy soil structure. A low content of organic matter and poor soil structure result in poor soil tilth, a reduced rate of water infiltration, the loss of plant nutrients, and increased susceptibility to erosion, all of which seriously affect crop performance and productivity.

A good cropping sequence includes cultural practices and crop rotations that offset the harmful effects of continuous single cropping. The selection of crops for inclusion in the rotation is an important consideration. Some crops and their production practices are naturally deleterious to soils. Other crops are soil enhancing. Legumes, such as alfalfa hay, are soil enhancing because of the fixation of nitrogen, reduced tillage, and permanent root systems. When properly managed, grasses for hay or pasture build soil structure and increase the amount of organic matter. A good croping sequence offsets most of the soil degradation resulting from cropping. A well designed cropping sequence also keeps erosion at an acceptable level by maintaining vegetation or crop residue on the soil during periods of wind and rain. Incorporating crop residue or green manure crops into the soil helps to maintain the content of organic matter. Soil structure, the soil water reservoir, and the nutrient-supplying capacity are all affected by the content of organic matter.

A planned cropping system assists in weed and pest control and maximizes the benefits of fertilizers and other chemical inputs. Benefits are accrued by interrupting host-pest relationships and creating more on-farm diversity. Additionally, subsequent crops utilize nutrient carryovers. Soil nutrients that are leached below the root zone of the crop can be intercepted and stored by deep-rooted cover and green manure crops and returned to the soil for subsequent crop use.

Conservation tillage is the reduction of conventional tillage operations to the level essential to control weeds, incorporate crop residue into the soil, modify the soil for favorable air and water movement, and prepare a favorable seedbed. Conservation tillage can range from a no-till operation to something less than conventional tillage. Crop residue management is a very important component that maintains a ground cover of 30 percent after planting, a level that greatly reduces the hazard of erosion.

Crop residue management is important no matter what type of tillage program is used. Crop residues help to maintain soil tilth, the content of organic matter, and soil structure. They also reduce the hazard of water erosion. Including high-residue crops, such as rice and wheat, in the crop rotation can make up for low-residue crops, such as beans. When possible, incorporation of grasses into the cropping sequence and green manure crops are excellent soil-enhancing practices. Crop residue management can benefit all of the cropland in the survey area.

Removal of excess water, including surface and subsurface water, helps to prevent or divert accumulations from rainfall, runoff, seepage, or irrigation. Water removal minimizes cropping limitations in areas of water-sensitive crops, such as alfalfa hay and walnuts, and can increase the yields of other crops. Accumulations of excess water can result from rainfall, from overirrigation, or from runoff into low areas or swales where surplus surface water collects. Capay, Clear Lake, Corbiere, Mallard, Scribner, and Willows soils have early season water tables. Surplus water should be a consideration when water-sensitive crops are grown on these soils. The water table varies from year to year, so the problems are not always present. The high water table can severely affect an alfalfa stand or orchard if the roots are in water during the growing season.

Control of surface water can help to minimize the limitations caused by runoff accumulations in low areas or tailwater at the lower end of irrigated fields. Excess surface waters affect crop performance and provide a habitat for weeds and mosquitoes. Land grading, tailwater recovery systems, and good irrigation water management can solve surface water
problems. These problems are associated mostly with the more heavily textured soils with slow infiltration rates, such as Capay, Clear Lake, Myers, and Willows soils. Low areas require diversions, dikes, or ditches to divert and control floodwater and other surface waters.

Toxic salt reduction can significantly improve crop performance. Salts in the soil limit crop performance by reducing the availability of water or decreasing the rate of water infiltration. Some soils, such as Scribner, may be excessively saline. Other soils, such as Alcapay and Willows, are excessively sodic. Colusa soils are characrteized by excessive salinity and sodicity. Infiltration problems are caused by excessive sodium in the soil. The sodium disperses the soil aggregates and destroys soil structure. Reduced water infiltration causes irrigation efficiency problems and difficulty in filling the soil profile with water.

Nonsaline sodic conditions can be controlled by applying soil amendments. Soil reclamation can be limited by technical problems (methods of removing the salts) or by financial and/or water resources. Reclamation of sodic soils requires the addition of soil amendments to free the sodium so that it can be leached below the root zone. Mechanical treatments are sometimes necessary to facilitate mixing of the amendment in the topsoil and thus increase the effectiveness of the amendment. Problems arise in areas where there is a high water table coupled with a high clay content. In these areas the leachate (water with the leached sodium) cannot be removed from the soil. Partially reclaimed soils, such as Willows, should not be kept fallow for long periods because the salts will migrate upward in the soil profile through evaporation.

Erosion control is needed on most soils. Water erosion occurs when raindrops strike bare soil and disperse the soil aggregates. Soils on slopes of more than 2 percent are susceptible to water erosion. Cool climatic conditions limit plant growth during critical erosive periods in winter.

Irrigation water management is essential for all irrigated crops. Correct field irrigation grades, water delivery systems, and irrigation water management are important for profitable crop production, soil and water conservation, the efficient use of irrigation water, and protection of the quality of ground and surface water.

The irrigation methods that can be used in this survey area are flood, furrow, border, and sprinkler. In areas where furrow and border methods are used, the fields should be graded for efficient irrigation water application that meets the needs of the crop and preserves water quality. Slopes should be limited to less than 2 percent. Soil investigation is necessary
before field grading is attempted. Investigation of the depth to restrictive layers is needed to determine whether the graded field can adequately support nutrients and meet water requirements. Adjusting the length of irrigation runs to the infiltration rate of the soil ensures that irrigation water can be managed for moisture replenishment and control of toxic salts.

Sprinkler irrigation systems are best adapted to soils with very high infiltration rates or slopes of more than 2 percent. Management is achieved by controlling the rate, amount, and timing of irrigation. The amount of water to be applied should not exceed the amount needed to adequately recharge the root zone. An excessive amount can leach nutrients and thus cause ground-water degradation. Sprinkler systems are good for establishing some crops, such as tomatoes. Good irrigation water management is profitable, conserves water, and protects water quality. Backflow prevention devices on agricultural wells are needed to protect ground water.

Drip irrigation systems are adapted to all soils but are best utilized on sloping soils and on soils with slow permeability, such as Hillgate. These systems conserve water supplies as well as soil nutrients. They result in less erosion than other systems and are beneficial in weed management.

Pasture management should include strategies that protect the soil and obtain sustained forage yields. Maintenance of desirable plant communities is a major consideration. Desirable plants are generally the most palatable. Weedy or undesirable plants usually thrive because livestock do not generally harvest them. An intensity of grazing that allows continued vigorous growth helps to maintain a pasture of desirable plants. Continued vigorous growth is possible only when enough leaf surface remains for plant regrowth. A good grazing plan should leave adequate leaf material and provide rest periods after grazing for plant recovery. An irrigation system that meets plant water requirements is a necessary element in good pasture management. Also, a balanced fertilization program enhances forage production. If optimum pasture growth is to be attained, soil moisture should be managed for minimum plant stress. Keeping animals off the pasture immediately after irrigation can minimize soil compaction. Scattering manure by harrowing or dragging enhances performance of the pasture.

Hayland management should achieve sustained production and soil protection. Profitable production can be maintained by keeping the field free of weeds and harvesting the forage at intervals that allow the plants to sustain thrifty growth. Good irrigation water management is essential. Overirrigation can deplete
soil oxygen supplies and leach nutrients below the root zone. Alfalfa plants cannot tolerate even short periods of water saturation. Plants may die or are attacked by disease and lose vigor if the field is overirrigated. Grasses take advantage of the excess water and infest the field.

Soils that have a high water table, such as Corbiere, Mallard, and Scribner soils, are poorly suited to alfalfa hay. Stands can be severely damaged or destroyed during years when the water table is high for long periods. Clayey soils that are subject to flooding or ponding, such as Capay and Willows soils, also are poorly suited to alfalfa hay.

Field and Row Crop Management

By Mike Murray, County Director and Row Crop Farm Advisor, University of California Cooperative Extension Service.

Processing Tomatoes

Processing tomatoes are the most economically important vegetable crop produced in the county (figure 8). They are grown on 25,000 to 30,000 acres in the county annually. In 1996, they had an on-farm value in the county of over $\$ 50$ million. The crop is planted under contract with one of the 8 to 10 processors that currently contract in the county. There are two distinct production seasons in the county. The west side of the valley (roughly west of Interstate Highway 5) can produce early season crops. This ability allows the canneries to spread out their processing season. The crops are planted from late January through mid-March and are harvested from early July through mid-August. About half of the tomato crop is planted in this west-side district. In the rest of the county, tomatoes are planted from early March through early June and mature from midAugust through early October.

Tomatoes are planted mostly by direct seeding, although there is currently some movement toward transplanting. The transplant shift is being caused by expensive hybrid seed prices, weed management benefits, less irrigation requirements, and the assurance of optimum final plant stands. The crop is grown on raised beds about 60 inches wide. Two rows per bed are planted in the areas of early season crops, and single rows are planted later in the year.

Seedling establishment is facilitated by sprinkler irrigation, and furrow irrigation generally is used during the rest of the growing season. Some wheel-line irrigation is used on the more sloping soils or on problematic soils, such as those characterized by poor infiltration or structure. While the crop requires only
about 18 to 20 inches of water, irrigation inefficiencies often result in applications of 30 to 36 inches.

Processing tomatoes are grown mainly on Hillgate, Hustabel, Mallard, Scribner, Vina, and Westfan soils. As with most other crops, they grow best on well drained, friable soils, but much of the crop is successfully produced on class 2 and 3 soils. Irrigation management is the key to success on the poorer soils. Common rotation crops include vineseeds, wheat, and field crops, such as dry beans, sugar beets, and cotton. There is some rotation with rice, but many of the soils used for rice production are unsuitable for optimum tomato production and low yields or poor fruit quality may result.

Vineseed Crops

Colusa County is the production center of the United States and the world for seed crops in the Curcurbit family (cucumbers, squash, pumpkins, watermelons, and other melons). These crops are planted annually on about 15,000 to 20,000 acres in the county. They had an on-farm value in the county of $\$ 15$ to $\$ 20$ million in 1996. All seed is currently planted under contract with one of the many contractors doing business in the county.

About half the crop consists of open-pollinated types (pumpkins, winter squashes, watermelons, and other melons), and about half consists of hybrids (summer squashes and cucumbers). Planting occurs after the soils have reached about 60 degrees F, usually from mid-May through mid-July. Harvest occurs from mid-August through late October. The growing season ranges from 70 to 80 days for some melons to over 120 days for winter squashes.

The vineseed crops are seeded directly into 60-inch raised beds. One or two rows per bed are planted, depending on the growth habit (vining nature) of the particular crop. The seed is planted in preirrigated soils. The irrigation method is almost exclusively the furrow system, as seed-borne diseases can occur in areas of overhead irrigation. The amount of water required for growing the crop varies significantly because of differences in length of the growing season, the depth of rooting, and the soil type. The shorter season crops may require only one or two postemergence irrigation runs, whereas the longseason ones may require five or six runs.

The crops are grown on a range of soils, including class 2 and 3 soils. A majority of the acreage of these crops is in areas of clayey soils, such as Myers soils, on the west side of the valley, but the crops also are grown on soils along the Sacramento River, such as Moonbend and Vina soils, which are very productive.

Miscellaneous Vegetables and Field Crops

The management practices needed in areas used for such crops as sweet corn, fresh-market cantaloupes, garlic, vegetable-seed crops, cotton, sugar beets, dry beans, and field corn are specific to those particular crops. The crops must be grown in a manner that meets their unique needs. Information about growing these and other crops can be obtained from the Extension Farm Advisors Office, University of California, or other knowledgeable sources. The annual acreage of these crops varies, depending on a host of economic factors, including the markets for the more major crops at the moment. Many of the crops fit into a good rotation program and help to control weeds, diseases, and insects. The proximity of Colusa County to markets, soil capability, and environmental limitations are important considerations for persons contemplating the production of nontraditional or "new" crops.

Rice and Small Grain Management

By Steven C. Scardaci, Rice Farm Advisor, University of California Cooperative Extension Service.

Rice

Rice is the number one crop in Colusa County in acreage and value. It is planted on 90,000 to 140,000 acres annually and was valued at $\$ 100$ million in 1996. The USDA commodity program for rice was recently decoupled from production decisions, making the program more market oriented. The future acreage and value of rice will likely follow the market.

Rice is well adapted to the Sacramento Valley with its warm climate and adequate supply of surface water. The clayey, poorly drained soils in the county are well suited to rice culture. Rice is widely grown on Willows, Capay, Myers, Clear Lake, Alcapay, Corbiere, Mallard, and Hillgate soils (figure 9).

Nearly all rice fields have been Teveled over the last 20 to 25 years. This leveling helps to eliminate and straighten levees and thus improves equipment efficiency and control of water depth during the season. Most fields are maintained by laser leveling every 4 or 5 years. Only a few fields currently still have contour levees.

Fields are typically prepared for spring planting by chiseling, disking twice, land planing three times, applying fertilizer, and harrowing and rolling. The goals of these operations are to dry and aerate the soil, destroy early germinated weeds, incorporate crop residue into the soil, level the soil, improve fertility, and prepare a final seedbed for planting.

Most growers currently use conventional flowthrough irrigation systems, in which water enters the top basin in the field and flows through several basins to the bottom basin. Levees and weir boxes placed at the ends of each levee control waterflow and water depth in the separate basins. Before 1984, most growers established a continuous flow of water through the fields, allowing a small amount of water to spill from the bottom basin into an agricultural drain. This practice allowed growers to maintain a constant water depth and helped to flush soil salts from the field, but pesticide residues in the tailwater were shown to cause water-quality problems. As a result, growers are required to hold irrigation water on the field for a period of time after a pesticide application, allowing the residues to break down or dissipate significantly before the water is released into public waterways. The water-holding times were only 4 to 6 days in 1984. By 1997, however, they were 28 to 30 days. Many growers and some districts have adopted various closed irrigation systems (recirculating, static, and gravity systems) in an effort to improve water control in the rice fields during these pesticide waterholding periods and to meet the established waterquality standards. These systems have been described in University of California publication number 21490, entitled "Rice Irrigation Systems for Tailwater Management."

Water and soil salinity levels can reduce yields in some areas of rice fields. These problems are most evident in fields that use recycled drain water or well water with an electrical conductivity (EC) of $0.7 \mathrm{dS} /$ meter or greater. In the root zone of the rice field, soil EC levels above $2.0 \mathrm{dS} /$ meter during the early season have reduced yields. Water and soil salinity levels typically increase in the direction of waterflow. The highest levels are at the bottom end of the field. The levels increase during the early season, when waterflow is lower and fields are subject to water-holding requirements. These higher early season salinity levels are problematic since rice seedlings are in the most sensitive plant growth stage. Salinity management may include monitoring of salinity in soil and water, selection or blending of water sources, use of multiple inlets to deliver fresh water to the bottom end of the fields, water recycling, increased waterflow, management of water depth that minimizes the likelihood of overly shallow water and evapoconcentration of salts, selection of a short waterholding period, and applications of soil amendments that increase the rate at which salts are leached in sodic soils.

Currently, incorporation straw into the soil, with and without flooding, and straw bailing are used as
alternatives to burning, which is being phased out. The incorporation of straw is the most widely used method since bailing is expensive and straw markets are currently limited. Efforts to develop straw markets are underway.

About 60 to 70 percent of the local rice acreage is continuously planted to rice (rice-rice or rice-ricefallow rotations). The soils on much of this acreage, for example, Alcapay, Clearlake, and Willows soils, are clayey, poorly drained, and sodic and are not well suited to the economic production of other crops. The remaining rice acreage is in areas of Scribner, Mallard, or other soils that are somewhat better drained, are not sodic, and can be used for rice in rotation with wheat, safflower, and tomatoes.

Small Grains

The small grains grown in the county include wheat, barley, and oats. Wheat, the most important small grain crop in the county, is currently grown on 20,000 to 40,000 acres, while barley is grown on about 750 acres and oats on about 500 acres. The value of the wheat grown in the county was $\$ 14$ million in 1996. Wheat is the small grain of choice because the yields and prices of this crop are higher than those of barley or oats.

Wheat is typically grown in rotation with tomatoes, vineseed crops, rice safflower, corn, and other field and row crops. Wheat is grown in scattered fields on Moonbend, Westfan, Grandbend, Vina, Hustabel, Scribner, Mallard, and Corval soils. Such soils as those in the Myers, Corbiere, and Capay series may not produce good yields of small grains because of poor internal drainage. During prolonged wet periods, small grains can grow poorly on inadequately drained soils.

Most of the wheat grown on the floor of the Sacramento Valley is irrigated and therefore has a higher yield potential than the nonirrigated wheat in the western foothills. Higher fertilizer, seed, and pesticide inputs are made on irrigated wheat and contribute to a higher yield potential.

Orchard Management

By John P. Edstrom, Orchard Farm Advisor, University of
California Cooperative Extension Service.
Almonds represent the major orchard crop in Colusa County. The acreage used for this crop has expanded in recent years to 20,000 acres. Much of this expansion is attributed to the successful adoption of low-volume (drip) irrigation in the Arbuckle-Williams area. The Arbuckle and Arand soils in this area are
coarse textured and have a low moisture-holding capacity. The surface layer is shallow in Hillgate soils and is underlain by a dense clay layer. Under such conditions, dramatic yield increases can result from the switch from sprinkler irrigation to drip irrigation that applies water frequently in small amounts to each individual tree. Soil limitations, such as a low waterholding capacity, slope, and a limited rooting depth, can largely be overcome by the use of low-volume irrigation systems coupled with frequent injections of nitrogen and potassium fertilizers through the drip systems.

In general, almond crops grow best on deep, well drained soils, such as those in the Westfan and Arbuckle series. Although well suited to these crops, Grandbend, Moonbend, and Vina soils are at low elevations along the Sacramento River where frosts are common during almond bloom. Primarily because of the frost-free microclimate of the Arbuckle area and nearby low foothills, almond crops are concentrated on Arbuckle, Hillgate, Westfan, and Arand soils. Higher density plantings are required if these soils are to approach the yields produced on prime soils. Typically, 100 or more trees per acre are planted versus 70 to 80 trees per acre on deep alluvial soils, such as Vina and Grandbend. High-density orchards are generally planted in a north-south orientation where trees within the row are spaced closer together than the distance between rows. Planting on mounds or berms helps to protect the trees from excessive moisture from irrigation or rainfall.

Widespread use of the soil modification technique known as slip plowing has significantly altered the soil profiles on thousands of acres of local almond orchards. This technique partially mixes soil layers of different textures to a depth of 5 or 6 feet. This mixing results in improvements in water infiltration and drainage that in turn favor vigorous and more uniform tree establishment. Root systems are generally deeper and more expansive under the modified soil conditions. This method is practiced mainly on Hillgate and Arbuckle soils. The long-term benefits of slip plowing to orchard productivity have not been documented.

Walnuts are generally demanding with respect to soil type. Deep, well drained, moderately textured soils are required for top production. Most Colusa County walnuts are planted adjacent to the Sacramento River, on such soils as those of the Grandbend, Moonbend, and Vina series. Walnuts also are successfully grown in areas of Westfan soils southwest of Williams.

Excessive water can be a problem in areas along the Sacramento River where surface flooding is common inside the levee system and subsurface
seepage from the river during periods of high river flows injures orchards outside the levees. In areas that are subject to flooding or seepage, planting on mounds or ridges lessens root-crown damage. Walnut culture has expanded away from the traditional Sacramento River area into heavier textured soils with a higher clay content, such as the somewhat poorly drained Corbiere soils, which were formerly used for row crops.

Prunes are the third major crop in the area and the local tree crop that is the least demanding in soil requirements (figure 10). Prunes can be successfully grown on a wide range of soils but generally grow best on deep, well drained soils. The most productive orchards are planted on Grandbend, Moonbend, and Vina soils along the Sacramento River.

River flooding and seepage are less detrimental to the water-tolerant plum rootstocks used for prunes. Surface, flood irrigation is most commonly used for prunes. Moveable pipe sprinklers are suitable for floodprone orchards. Permanent sprinklers and low-volume systems should not be installed in orchards where soil erosion or deposition is likely. Minor plantings of prunes are in the Arbuckle area, where Arbuckle, Hillgate, and Arand soils are suitable for prune production, given the use of low-volume irrigation.

Yields per Acre

The average yields per acre that can be expected of the principal crops under a high level of management are shown in table 6. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable highyielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction (pH) and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

For yields of irrigated crops, it is assumed that the irrigation system is adapted to the soils and to the
crops grown, that good-quality irrigation water is uniformly applied as needed, and that tillage is kept to a minimum.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 6 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops (USDA, 1961). Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit.

Capability classes, the broadest groups, are designated by the numbers 1 through 8 . The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.

Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that
restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 4 e . The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

Capability units are soil groups within a subclass. The soils in a capability unit are enough alike to be suited to the same crops and pasture plants, to require similar management, and to have similar productivity. Capability units are generally designated by adding an Arabic numeral to the subclass symbol, for example, $4 \mathrm{e}-3$. No unit designations are given for class 1 soils.

The units are defined as follows:
Unit 1 soils have a potential or actual wind or water erosion hazard.

Unit 2 soils have a drainage or overflow hazard. The soils are generally somewhat poorly drained or poorly drained and are flooded or ponded.

Unit 3 soils have a slowly or very slowly permeable subsoil or substratum.

Unit 4 soils have coarse or gravelly textures.
Unit 5 soils have fine or very fine textures.
Unit 6 soils have salinity or alkali properties
sufficient to constitute a continuing limitation or hazard.

Unit 7 soils have enough stones, cobbles, or rocks to interfere with tillage.

Unit 8 soils have a hardpan or hard, unweathered bedrock in the root zone.

Unit 9 soils have low inherent fertility associated with strong acidity; a low calcium-magnesium ratio; or excess calcium, boron, or molydenum.

Unit 10 soils have a high content of organic matter. They are generally peats or mucks.

Unit 11 soils have a coarse sandy or very gravelly substratum that limits root penetration and moisture retention.

The land capability classification of each major component in the map units in this survey area is given in table 7 and in the section "Detailed Soil Map Units."

Important Farmlands

Two kinds of important farmland are recognized in this soil survey-prime farmland and additional farmland of statewide importance.

Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. Prime farmland is permeable to water and air, is not excessively erodible or saturated with water for long periods, and either is not frequently flooded during the growing season or is protected from flooding. The slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime
farmland is available at the local office of the Natural Resources Conservation Service.

About 245,000 acres in the survey area, or approximately 33 percent of the total acreage, meets the soil requirements for prime farmland. Most areas of this land are in the eastern part of the survey area, in the Sacramento Valley. The crops grown on this land, mainly rice, tomatoes, almonds, prunes, and wheat, account for a large part of the county's total agricultural income each year.

Most of the soils in the upland valleys would meet the requirements for prime farmland if an adequate and dependable supply of irrigation water were available.

A recent trend in land use in some parts of California has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

The map units in the area that are considered prime farmland are listed in table 8. This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and doughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps in this publication. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Farmland of Statewide Importance

This is land, in addition to prime and unique farmlands, that is of statewide importance for the production of food, feed, fiber, forage, and oilseed crops.

The criteria for defining and delineating this land are to be determined by the appropriate State agency or agencies. Generally, additional farmlands of statewide importance include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some may produce as high a yield as prime farmland if conditions are favorable. In some States additional farmland of statewide importance may include tracts of land that have been designated for agriculture by State law.

The map units in the survey area that are considered additional farmland of statewide importance are listed in table 9. This list does not constitute a recommendation for a particular land use.

On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and doughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Storie Index

The soils used primarily used as cropland in the Sacramento Valley and as rangeland in the Coast Range foothills are rated in table 10a according to the Storie index (Storie, 1933 and 1976). The soils used primarily as timberland in the higher Coast Range are rated in table 10b according to the Storie index (Storie and Weislander, 1948). The Storie index expresses numerically the relative degree of suitability of a soil for general intensive agricultural uses or for timber at the time of the evaluation.

Index for Cropland and Rangeland

The Storie index rating is based on soil characteristics and is obtained by evaluating surface and subsurface chemical and physical properties and surface landscape features. The original "Storie SoilRating Chart" (Storie, 1976) is in Appendix C. Some of the terminology used in this chart is not used today. When the ratings were developed, however, they were compared to today's terminology and the most logical estimate for the rating was made.

Availability of water for irrigation, local climate, size and accessibility of mapped areas, distance to markets, and other factors that might determine the desirability of growing certain plants in a given locality were not considered the rating. Therefore, the index should not be used as the only indicator of land value. Where the local economic and geographic factors are known to the user, however, the Storie index may provide additional objective information for land tract value comparisons.

Four general factors are used in determining the index rating- A, the permeability, available water capacity, and depth of the soil; B, the texture of the surface soil; C, the dominant slope of the soil body; and X, other conditions more readily subject to management or modification by the land user. In this area these conditions include drainage and flooding, salinity and alkalinity, fertility, acidity, erosion, and microrelief. For some soils, more than one of these X conditions are used in determining the rating.

A rating of 100 percent expresses the most favorable, or ideal, condition for general crop production. Lower percentage ratings are assigned for less favorable conditions or characteristics. Factor ratings, in percentages, are selected from tables prepared from data, including yield data. Certain properties are assigned a range of values to allow for variations in the properties that affect the suitability of the soil for general agricultural purposes.

The index rating for a soil component of a map unit is obtained by multiplying the percentage rating values given to its four factors, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and X . If more than one condition is recognized for the X factor for a soil, the value for each condition acts as a multiplier. Therefore, any of the general factors or X factor conditions may dominate or control the final rating.

If a map unit consists primarily of one named soil series (a consociation), the index rating for the named soil component equals the index rating for the map unit. If a map unit consists of more than one named component (a complex), ratings are assigned to each named component (soil series or miscellaneous area, such as Rock outcrop). Inclusions of other soils or minor components not identified in the map unit name are not considered in the calculations.

Map units are assigned grades according to their suitability for general intensive agriculture as shown by their Storie index ratings. The six grades and their range in index ratings are:

> Grade 1-80 to 100
> Grade 2-60 to 79
> Grade 3-40 to 59
> Grade 4-20 to 39
> Grade 5-10 to 19
> Grade 6-less than 10

Grade 1 soils are well suited to intensively cultivated crops that are climatically adapted to the region.

Grade 2 soils are good agricultural soils, although they are not so desirable as soils in grade 1 because of a less permeable subsoil, deep cemented layers (e.g., duripans), a gravelly or moderately fine textured surface layer, moderate or strong slopes, restricted drainage, low available water capacity, lower soil fertility, or a slight or moderate hazard of flooding.

Grade 3 soils are only fairly well suited to agriculture because of moderate soil depth; moderate to steep slopes; restricted permeability in the subsoil; a clayey, sandy, or gravelly surface layer; somewhat restricted drainage; acidity; low fertility; or a hazard of flooding.

Grade 4 soils are poorly suited to agriculture. They are more limited in their agricultural potential than the
soils in grade 3 because of such restrictions as a shallower depth; steeper slopes; poorer drainage; a less permeable subsoil; a gravelly, sandy, or clayey surface layer; channeled or hummocky microrelief; or acidity.

Grade 5 soils are very poorly suited to agriculture and are seldom cultivated. They are more commonly used as pasture, rangeland, or woodland.

Grade 6 soils and miscellaneous areas are not suited to agriculture because of very severe or extreme limitations. They are better suited to limited use as rangeland, protective habitat, woodland, or watershed.

Index for Timberland

The Storie index rating is based on soil characteristics and is obtained by evaluating surface and subsurface chemical and physical properties and climatic features. The original "Timber Soil Rating Chart" (Storie and Weislander, 1948) is in Appendix C. Some of the terminology used in this chart is not used today. When the ratings were developed, however, they were compared to today's terminology and the most logical estimate for the rating was made.

The size and accessibility of mapped areas, distance to markets, and other factors that might determine the desirability of timber production in a given locality were not considered in the rating. Therefore, the index should not be used as the only indicator of timber production. Where the local economic and geographic factors are known to the user, however, the Storie index may provide additional objective information for timber production.

Five general factors are used in determining the index rating- A, soil depth and texture; B, permeability; C, chemical characteristics of the soil; D, drainage and runoff properties of the soil; and E, climate.

The index rating for a soil component of a map unit is obtained by multiplying the percentage rating values given to its five factors, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E .

If a map unit consists primarily of one named soil series (a consociation), the index rating for the named soil component equals the index rating for the map unit. If a map unit consists of more than one named component (a complex), ratings are assigned to each named component, except for Rock outcrop. Miscellaneous areas, such as Rock ourcrop, are considered to be unsuitable for timber production and are not rated or are assigned a zero rating. Inclusions of other soils or minor components not identified in the map unit name are not considered in the calculations.

Timber site ratings expressed as percentages are assigned adjective ratings according to the suitability
of the soil for general intensive timber production. See figure 23 in Appendix C. The five adjective ratings and their range in numerical ratings are:

```
Redwood-100 to 120
High-85 to 99
Medium-50 to 84
Low-30 to 49
Non-timber-0 to 29
```


Rangeland

By Larry Branham, Range Specialist, Natural Resources Conservation Service.

Approximately 325,000 acres in Colusa County is used as rangeland (figure 11). The majority of the rangeland is in the western part of the county and is situated between the irrigated cropland on the valley floor and the areas of brush and forest in the mountains. Elevation ranges from about 200 to 7,000 feet.

The typical livestock enterprise in the survey area is a cow-calf operation, although stocker operations do occur. The 1996 Colusa County Agricultural Commissioner summary reported 24,000 cattle and calves valued at over $\$ 7$ million. In addition, some range areas are used in a long rotation with dryland cereal grain production.

In areas that have similar climate and topography, differences in the kind and amount of vegetation produced on rangeland are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

Table 11 shows, for each soil that supports rangeland vegetation suitable for grazing, the ecological site; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in the table follows.

An ecological site is a distinctive kind of rangeland that produces a characteristic natural plant community that differs from natural plant communities on other sites in kind, amount, and proportion of range plants. The relationship between soils and vegetation was ascertained during this survey; thus, ecological sites generally can be determined directly from the soil map. Soil properties that affect moisture supply and plant nutrients have the greatest influence on the productivity of range plants. Soil reaction (pH), salt content, and a seasonal high water table are also important.

Total production is the amount of vegetation that
can be expected to grow annually on well managed rangeland that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperature make growing conditions substantially better than average. In a normal year, growing conditions are about average. In an unfavorable year, growing conditions are well below average, generally because of low available soil moisture.

Dry weight is the total annual yield per acre of airdry vegetation. Yields are adjusted to a common percent of air-dry moisture content. The relationship of green weight to air-dry weight varies according to such factors as exposure, amount of shade, recent rains, and unseasonable dry periods.

Characteristic vegetation-the grasses, forbs, and shrubs that make up most of the potential natural plant community on each soil-is listed by common name. Under composition, the expected percentage of the total annual production is given for each species making up the characteristic vegetation. The amount that can be used as forage depends on the kinds of grazing animals and on the grazing season.

Range management requires a knowledge of the kinds of soil and of the potential natural plant community. It also requires an evaluation of the present range condition. Range condition is determined by comparing the present plant community with the potential natural plant community on a particular site. The more closely the existing community resembles the potential community, the better the range condition. Range condition is an ecological rating only.

The objective in range management is to control grazing so that the plants growing on a site are about the same in kind and amount as the potential natural plant community for that site. Such management generally results in the optimum production of vegetation, control of undesirable brush species, conservation of water, and control of erosion. Sometimes, however, a range condition somewhat below the potential meets grazing needs, provides wildlife habitat, and protects soil and water resources.

Technical assistance in rangeland management can be obtained from the local office of the Natural Resources Conservation Service or from the Cooperative Extension Service.

Figure 8.-Tomatoes on Vina soils in an area north of Grimes.

Figure 9.-Willows soils flooded for rice production. The Coast Range is in the background.

Figure 10.-Prunes on Scribner soils in an area south of Grimes.

Figure 11.-Corval soils along Contina Vineyard Creek. These soils are used for livestock grazing. The Goldeagle-Positas-Balcom complex is in the background.

Climate

The weather has a significant influence on the growth of range vegetation. The occurrence of the first effective rainfall and the distribution of subsequent rainfall as well as temperature greatly affect seasonal growth and total forage production. Typically, soil moisture conditions are favorable when temperatures are too low (December through February) for good plant growth, and soil moisture can be limiting when temperatures are optimum for plant growth (April and May). Soil moisture conditions in the spring greatly affect total production and species composition.

Physical Characteristics

Soils, topography, and aspect influence forage production and species composition.

The soil factors that affect forage production are the effective rooting depth, the water-holding capacity, texture, the content of organic matter, fertility, and parent material. These factors in varying combinations determine the forage production potential of the soil. In general, the deeper, fine textured soils have a high potential for forage production, whereas the shallow, coarser textured soils tend to have a lower production potential.

Grazing when the soils are wet can result in severe soil compaction, especially in areas of fine textured soils, such as clays and clay loams. Compaction increases the bulk density and strength of the soil while reducing the infiltration rate and porosity. These conditions lead to increased runoff, slow seedling growth, and restricted root development. Compaction and its effects can be lessened by maintaining adequate ground cover and by allowing the soil to rest and recover through prescribed grazing management.

Parent material affects the type and amount of nutrients available for plant growth. In some areas the proportion of nutrients may limit plant growth. Soils that formed in serpentintic parent materials, such as those in Bear Valley, may exhibit reduced production because of a high ratio of magnesium to calcium.

Topography affects the moisture regime, which in turn influences forage production. On steep slopes high runoff rates reduce the opportunity for infiltration of rainfall and result in a high potential for erosion. On moderate to gentle slopes, the runoff rates are lower, there is more opportunity for infiltration, and the potential for erosion is lower. Flat and bottom areas collect and hold runoff that can create saturated soil conditions.

Aspect affects forage production primarily through its effects on temperatures and solar radiation. Southand west-facing slopes tend to dry faster and warm earlier in spring than north-facing slopes, which tend to be colder in winter.

Vegetation

Range vegetation in the survey area is dominated by annual cool-season grasses and forbs, the majority of which were introduced from Europe. Cool-season annuals begin each year from seed, requiring favorable moisture and temperature conditions for germination.

These introduced species include both desirable forage species, such as soft chess, wild oats, burclover, and filaree, and less desirable species, such as medusahead, starthistle, and red brome.

Warm-season, summer-growing species do occur, but they are usually of little forage value. These species include tarweed, vinegarweed, and turkeymullein. These species grow and survive on residual soil moisture not utilized by the cool-season species.

Native plant species, particularly the perennial grasses, grow throughout the rangeland in the county. Their contribution to overall forage production is limited, but where they do occur, they provide significant forage both early and late in the growing season. Cool-season native perennial grasses include needlegrasses, wildrye, oniongrasses, and pine bluegrass. Additional native species include woody plants, such as blue oak, foothill pine, California juniper, buckbrush, manzanita, and chamise, and native forbs, such as lupines, brodiaea, lilies, and poppies.

Management of Rangeland

Proper management is essential to maintain or improve the productivity of rangeland for livestock, wildlife, and related resources. It must address the needs of both the animals and the plants. Following is a description of management measures and range improvement practices involved in the proper use of rangeland.

Prescribed Grazing

Prescribed grazing is the controlled harvest of range forage at a level and intensity that optimizes forage production while at the same time addressing the needs associated with the plants, animals, soil,
and water. Guidelines for developing a grazing management plan may include key forage species, season of use, seasonal plant growth, forage utilization, animal nutrition, livestock distribution, and proper grazing use.

The key forage species may be a single or select group of species, such as native perennial grasses, or a desirable plant community. In either case it is important to know the growth and reproductive requirements of the chosen species and to develop management guidelines to address these needs.

Season of Use

Season of use is the period when the range is being grazed. This period typically starts in November or December and runs through April or May. Within the grazing period there are three growth phases. These phases relate to the rate of growth and quality and quantity of available forage.

The first phase begins with the fall rains and germination of the winter annual species and continues through the period of slow growth in winter. Available green forage is limited, and livestock primarily utilize residual dry matter from the previous growing season. Forage quality is low, and supplemental food is usually required to meet the nutritional requirements of the livestock.

The second growth phase begins in late winter. During this period the rate of forage growth increases and the quality and quantity of forage plants are adequate for livestock nutritional requirements.

The third phase begins in early spring and continues to plant maturity. During this period, forage growth exceeds the nutritional requirements of the livestock, there is a surplus of forage, and grazing can be adjusted so that the proper amount of residual dry matter is left on the soil.

Balancing livestock numbers with the different growth phases allows the efficient utilization of available forage, encourages the growth of desirable forage species, and reduces the extent of soil trampling during the winter.

Range Improvement Practices

Range improvement practices, such as livestock water developments, fences, and access trails, are used to achieve better livestock distribution and uniform forage utilization. These practices should be part of an overall grazing management plan.

Such practices as range seeding, applications of fertilizer, and brush management restore or improve forage productivity. A grazing management plan is needed to ensure that the conditions that necessitated these practices do not continue to occur.

Riparian Areas

Riparian areas, although small, are very important components of rangeland ecosystems. They provide essential habitat for many wildlife species, carry runoff from the rangeland, and provide water and forage for livestock. Managing these areas as separate units helps to maintain and enhance the many benefits derived from the areas.

Recreational Development

The soils of the survey area are rated in tables 12 and 13 according to limitations that affect their suitability for recreational uses. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Slight indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Moderate indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Severe indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 12 and 13 can be
supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp Areas

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas.

The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and rock fragments. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Major Management Considerations

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

Dusty.-Soil particles detach easily and cause dust.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Salinity (EC).-Excess water-soluble salts in the soil restrict the growth of most plants.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Sodicity (SAR).-Excess exchangeable sodium,
which imparts poor physical properties, restricts the growth of plants.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Picnic Areas

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, wetness, ponding, flooding, permeability, and rock fragments. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Major Management Considerations

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

Dusty.-Soil particles detach easily and cause dust.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Salinity (EC).-Excess water-soluble salts in the soil restrict the growth of most plants.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Sodicity (SAR).-Excess exchangeable sodium, which imparts poor physical properties, restricts the growth of plants.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and
sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Playgrounds

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and rock fragments on the surface are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer; the content of clay, sand, or organic matter; wetness; ponding; flooding; permeability; and rock fragments. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Major Management Considerations

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

Dusty.-Soil particles detach easily and cause dust.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Salinity (EC).-Excess water-soluble salts in the soil restrict the growth of most plants.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Sodicity (SAR).-Excess exchangeable sodium, which imparts poor physical properties, restricts the growth of plants.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Paths and Trails

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are rock fragments on the surface, wetness, ponding, flooding, slope, texture of the surface layer, and the content of sand, clay, or organic matter.

Major Management Considerations

Dusty.-Soil particles detach easily and cause dust.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides.
\mathbf{K} factor.-The soil is in a potential water erosion class.

Organic matter (OM).-A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability

Sand or sandy texture.-At some depth the content of sand or a sandy texture results in a soil that is soft and loose, droughty, and low in fertility or is too fine for use as gravel.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Off-Road Motorcycle Trails

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability,
dustiness, and the ease of revegetation. These properties are rock fragments on the surface, slope, wetness, ponding, flooding, texture of the surface layer, and the content of clay, sand, or organic matter.

Major Management Considerations

Dusty.-Soil particles detach easily and cause dust.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides.

Organic matter (OM).-A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Sand or sandy texture.-At some depth the content of sand or a sandy texture results in a soil that is soft and loose, droughty, and low in fertility or is too fine for use as gravel.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Lawns, Landscaping, and Golf Fairways

Lawns and landscaping require require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are soil reaction (pH); depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, wetness, ponding, slope, stoniness, and the content of sand, clay, or organic matter in the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be
required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are soil reaction (pH); depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, wetness, ponding, slope, rock fragments on the surface, and the content of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Major Management Considerations

Available water capacity (AWC).-The available water capacity is low enough to restrict the growth of plants.

Calcium carbonates.-The content of calcium carbonates may be high enough to restrict the growth of plants.

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

Depth to pan.-Dense, hard, somewhat impervious cemented soil material at a specific depth restricts the use.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

Organic matter (OM).—A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.
pH .-The pH of the soil is too low (acid) or too high (basic) for the growth of most plants.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Salinity (EC).—Excess water-soluble salts in the soil restrict the growth of most plants.

Sand or sandy texture.-At some depth the content of sand or a sandy texture results in a soil that is soft and loose, droughty, and low in fertility or is too fine for use as gravel.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

Sodicity (SAR).-Excess exchangeable sodium, which imparts poor physical properties, restricts the growth of plants.

Sulfur content.-The sulfur level in the soil may be high enough to restrict the growth of plants.

Surface clay.-The clay content or clayey texture of the surface layer results in a soil that is slippery and sticky when wet and slow to dry. The soil climate may modify the limitation.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil within a depth of 5 or 6 feet. Because of the map scale, small areas of different minor components may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about grain-size distribution, liquid limit, plasticity index, soil reaction (pH), depth to bedrock, hardness of bedrock within 5 or 6 feet of the surface, soil wetness, depth to a seasonal high water table, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell
potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 14 and 15 show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, and shallow excavations.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Slight indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Moderate indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Severe indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include wetness, ponding, flooding, subsidence, linear extensibility (LEP or shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include wetness, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount, size, and depth of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include wetness, ponding, flooding, subsidence, linear extensibility (LEP or shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount, size, and depth of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a
binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, wetness, ponding, flooding, the content of rock fragments, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (LEP or shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the content of rock fragments, and dense layers influence the ease of digging, filling, and compacting. Seasonal wetness, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, wetness, and linear extensibility (LEP or shrink-swell potential) influence the resistance to sloughing.

The ease of digging, filling, and compacting is affected by the depth to bedrock, a cemented pan, or a very firm dense layer; content of rock fragments; soil texture; and slope. The time of the year that excavations can be made is affected by the depth to a seasonal high water table and the susceptibility of the soil to flooding. The resistance of the excavation walls or banks to sloughing or caving is affected by soil texture and depth to the water table.

Major Management Considerations for Dellings Without Basements

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for dwellings.
- If slopes are more than 8 percent, cutting may be needed to provide level building sites. The cuts can expose the bedrock.
- The bedrock can serve as a good base for the foundation.
- Frequent irrigation cycles and controlled application rates help to maintain vegetation.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides.

- The hazard of flooding should be considered before buildings or capital improvements are planned and installed.
- Buildings, roads, and streets should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect buildings from flooding.

Organic matter (OM).-A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

Shrink-swell (LEP).-Shrinking when the soil is dry and swelling when it is wet are expressed as the linear extensibility percent (LEP). Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.

- Properly designing foundations and footings and diverting runoff away from buildings help to prevent the structural damage caused by shrinking and swelling.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Excavation for buildings increases the hazard of erosion.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- A drainage system is needed where building foundations are constructed.

Major Management Considerations for Dwellings With Basements

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for dwellings.
- If slopes are more than 8 percent, cutting may be needed to provide level building sites. The cuts can expose the bedrock.
- The bedrock can serve as a good base for the foundation.
- Frequent irrigation cycles and controlled application rates help to maintain vegetation .

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before buildings or capital improvements are planned and installed.
- Buildings, roads, and streets should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect buildings from flooding.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- A drainage system is needed where building foundations are constructed.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Shrink-swell (LEP).-Shrinking when the soil is dry and swelling when it is wet are expressed as the linear extensibility percent (LEP). Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.

- Properly designing foundations and footings and diverting runoff away from buildings help to prevent the structural damage caused by shrinking and swelling.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Excavation for buildings increases the hazard of erosion.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- A drainage system is needed where building foundations are constructed.

Major Management Considerations for Small Commercial Buildings

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for the buildings.
- If slopes are more than 4 percent, cutting may be needed to provide level building sites. The cuts can expose the bedrock.
- The bedrock can serve as a good base for the foundation.
- Frequent irrigation cycles and controlled application rates help to maintain vegetation .

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before buildings or capital improvements are planned and installed.
- Buildings, roads, and streets should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect buildings from flooding

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- A drainage system is needed where building foundations are constructed.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Shrink-swell (LEP).-Shrinking when the soil is dry and swelling when it is wet are expressed as the linear extensibility percent (LEP). Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.

- Properly designing foundations and footings and diverting runoff away from buildings help to prevent the structural damage caused by shrinking and swelling.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Excavation for buildings increases the hazard of erosion.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- A drainage system is needed where building foundations are constructed.

Major Management Considerations for Local Roads and Streets

AASHTO GI (soil strength).-Engineering properties of the soil expressed as the AASHTO group index indicate soil strength. Values of more than 8 indicate low soil strength for roads and airfield construction.

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for local roads and streets.
- If slopes are more than 8 percent, cutting may be needed to provide esentially level sites for roads and streets. The cuts can expose the bedrock.
- The bedrock can serve as a good base for the roads and streets.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- A drainage system is needed where roads are constructed.

Shrink-swell (LEP).-Shrinking when the soil is dry and swelling when it is wet are expressed as the linear extensibility percent (LEP). Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.

- Properly designing the road base and diverting runoff away from the roads help to prevent the damage caused by shrinking and swelling.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Excavation for roads increases the hazard of erosion.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- A drainage system is needed where roads are constructed.

Major Management Considerations for Shallow Excavations

Bulk density (dense layer).-A high bulk density can result in a soil layer that is too dense.

Caving potential.-The walls or sides of excavations tend to cave inward. All soil excavations have the potential to cave, but some soils have a higher potential than others.

Clay or clayey texture.-At some depth the clay content or a clayey texture results in a soil that is slippery and sticky when wet and slow to dry.

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for excavations.
- If slopes are more than 8 percent, cutting may be needed to provide a level site. These excavations can expose the bedrock.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides.

- The hazard of flooding should be considered before excavations are made.
- Dikes and channels that have outlets for floodwater can protect excavations.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- A drainage system is needed during some periods of the year.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Excavation increases the hazard of erosion.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the period when excavations can be made.

- A drainage system is needed during some periods of the year.

Sanitary Facilities

Tables 16 and 17 show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Slight indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Moderate indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Severe indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which
effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, rock fragments, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Groundwater contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and rock fragments can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

Sanitary landfills are areas where solid waste is
disposed of by burying it in soil. There are two types of landfill-trench and area. In a trench landfill, the waste is placed in a trench. It is spread, compacted, and covered daily with a thin layer of soil excavated at the site. In an area landfill, the waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site.

Both types of landfill must be able to bear heavy vehicular traffic. Both types involve a risk of groundwater pollution. Ease of excavation and revegetation should be considered.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, wetness, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction (pH), and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an area sanitary landfill, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin
layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, wetness, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If permeability is too rapid or if fractured bedrock, a fractured cemented pan, or the water table is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, wetness, ponding, rock fragments, slope, depth to bedrock or a cemented pan, soil reaction (pH), and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or a weter table to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Major Management Considerations for Septic Tank Absorption Fields

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for septic tank absorption fields.
- The filtering capacity of the leach lines is restricted by the limited soil volume available for filtering the effluent, or bedrock can prevent installation of the
leach lines. If the leach lines are installed too close to the bedrock, the effluent can contaminate ground water.
- Enlarging the septic tank absorption fields helps to overcome the limited depth to bedrock.
- If slopes are more than 8 percent, cutting may be needed to provide essentially level sites. The cuts can expose the bedrock.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before capital improvements are planned and the system is installed.
- The system should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect the onsite sewage disposal system from flooding.

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

- Restricted permeability increases the possibility of failure of septic tank absorption fields.
- Restricted permeability can be overcome by increasing the size of the absorption field and using coarser backfill material or by installing the leach lines in strata that are more permeable.
- Building up or mounding the septic system site with suitable fill material increases the filtering capacity of the absorption field.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- Adding suitable fill material to raise the absorption field can improve the performance of the septic system.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Onsite investigation is needed to identify areas where the soil is suitable for septic tank absorption fields.
- Installing the leach lines on the contour helps to prevent the seepage of effluent in downslope areas.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- Adding suitable fill material to raise the absorption field a sufficient distance above the seasonal high
water table can improve the performance of the septic system.

Major Management Considerations for Sewage Lagoons

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for the sewage lagoon.
- Enlarging the sewage lagoon helps to overcome the limited depth to bedrock.
- If slopes are more than 2 percent, cutting may be needed to provide essentially level sites. The cuts can expose the bedrock.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before capital improvements are planned and the sewage lagoon is installed.
- The sewage lagoon should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect the sewage lagoon from flooding.

Organic matter (OM).-A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

- A suitable lining is needed to prevent seepage and contamination of the ground water.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- Adding suitable fill material to raise the sewage lagoon improves performance.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Onsite investigation is needed to identify areas where the soil is suitable for sewage lagoons.
- Installing sewage lagoons on the contour helps to prevent the seepage of effluent in downslope areas.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- Adding suitable fill material to raise the sewage
lagoon a sufficient distance above the seasonal high water table improves performance.

Major Management Considerations for Trench Sanitary Landfills

Clay or clayey texture.-At some depth the clay content or a clayey texture results in a soil that is slippery and sticky when wet and slow to dry.

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for sanitary landfills.
- Enlarging the sanitary landfill helps to overcome the limited depth to bedrock.
- If slopes are more than 8 percent, cutting may be needed to provide essentially level sites. The cuts can expose the bedrock.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before capital improvements are planned and the sanitary landfill is installed.
- The sanitary landfill should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect the sanitary landfill from flooding.

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast. - A suitable lining is needed to prevent seepage and contamination of the ground water.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- Adding suitable fill material to raise the sanitary landfill improves performance.

Salinity (EC).-Excess water-soluble salts in the soil restrict the growth of most plants.

Sand or sandy texture.-At some depth the content of sand or a sandy texture results in a soil that is soft and loose, droughty, and low in fertility or is too fine for use as gravel.

Sodicity (SAR).-Excess exchangeable sodium, which imparts poor physical properties, restricts the growth of plants.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Onsite investigation is needed to identify areas where the soil is suitable for sanitary landfills.
- Installing sanitary landfills on the contour helps to prevent the seepage of effluent in downslope areas. - During construction all bare ground should be mulched. A ground cover should be established to
prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- Adding suitable fill material to raise the sanitary landfill a sufficient distance above the seasonal high water table improves performance.

Major Management Considerations for Area Sanitary Landfills

Depth to bedrock.-Bedrock is close enough to the surface to restrict the use.

- Onsite investigation is needed to identify areas where the soil is deep enough for sanitary landfills.
- Enlarging the sanitary landfill helps to overcome the limited depth to bedrock.

Flooding.-The soil is flooded by moving water from stream overflow, runoff, or high tides

- The hazard of flooding should be considered before capital improvements are planned and the sanitary landfill is installed.
- The sanitary landfill should be located above the expected level of flooding.
- Dikes and channels that have outlets for floodwater can protect the sanitary landfill from flooding.

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast. - A suitable lining is needed to prevent seepage and contamination of the ground water.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- Adding suitable fill material to raise the sanitary landfill improves performance.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Onsite investigation is needed to identify areas where the soil is suitable for sanitary landfills.
- Installing sanitary landfills on the contour helps to prevent the seepage of effluent in downslope areas.
- During construction all bare ground should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Wetness.-Wetness near the surface or a high water table restricts the growth of plants and the construction of facilities.

- Adding suitable fill material to raise the sanitary landfill a sufficient distance above the seasonal high water table improves performance.

Major Management Considerations for Daily Cover for Landfill

Clay or clayey texture.-At some depth the clay content or a clayey texture results in a soil that is slippery and sticky when wet and slow to dry.

Depth to bedrock.-Bedrock is too near the surface.

- Onsite investigation is needed to identify areas where the soil is deep enough to provide cover material.

Organic matter (OM).-A high content of organic matter at some depth, sometimes expressed as a Unified soil class (PT, OL, or OH), can result in poor engineering properties and subsidence. A low content of organic matter can restrict the growth of plants.

Packing.-Unified class OL, OH, CH, or MH indicates that the soil may be difficult to compact with regular earthwork construction equipment.

Permeability.-The movement of water through the soil adversely affects the specified use. The permeability may be either too slow or too fast.

- The material is too coarse for use as landfill cover.

Using this material as cover can result in seepage and contamination of the ground water.
pH .-The pH of the soil is too low (acid) or too high (basic) for the growth of most plants.

Ponding.-Standing water on soils in closed depressions that is removed only by percolation or evapotranspiration.

- Seasonal ponding may restrict access to the material.

Rock fragments.-The profile contains enough rock fragments of a specific size to adversely affect site preparation or trafficability.

Salinity (EC).-Excess water-soluble salts in the soil restrict the growth of most plants.

Sand or sandy texture.-At some depth the content of sand or a sandy texture results in a soil that is soft and loose, subject to wind erosion, droughty, and low in fertility or is too fine for use as gravel.

Slope.-The slope is steep enough that special practices are required to ensure satisfactory performance of the soil.

- Onsite investigation is needed to identify areas where the slope is suitable.
- If slopes are more than 8 percent, cutting may be needed. The cuts can expose undesirable material.
- The cuts should be mulched. A ground cover should be established to prevent excessive erosion during periods of high rainfall.

Sodicity (SAR).-Excess exchangeable sodium, which imparts poor physical properties, restricts the growth of plants.

Wetness.-Wetness near the surface or a high
water table restricts the growth of plants and the construction of facilities.

- Seasonal wetness may restrict access to the material.

Construction Materials

Tables 18 and 19 give information about the soils as potential sources of gravel, sand, topsoil, reclamation material, and roadfill. Normal compaction, minor processing, and other standard construction practices are assumed.

The soils are rated good, fair, or poor as potential sources of topsoil, reclamation material, and roadfill. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

The soils are rated as a good, fair, or poor source of sand and gravel. A rating of good means that the source material is likely to be in or below the soil. The numerical ratings in these columns indicate the degree of probability. The number 0.0 indicates that the soil is an improbable source. A number between 0.0 and 1.0 indicates the degree to which the soil is a probable source of sand or gravel.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 18, only the probability of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes, the thickness of suitable material, and the content of rock fragments. If the lowest layer of the soil contains sand or gravel, the soil is rated as a probable source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction (pH), and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant
growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; soil reaction (pH); available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by rock fragments, wetness, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Water Management

Table 20 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for embankments, dikes, and levees and for pond reservoir areas. The limitations are considered slight if soil properties and site features are generally favorable for the indicated use and limitations are minor and are easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increase in construction costs, and possibly increased maintenance are required.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Table 5.--Limitations Affecting Irrigated Cropland
(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. Only the three highest value limitations are lisited. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\| Pct.	Limitation	\|Value
	\|	\|	
108:			
Scribner silt loam------------	\| 80	\| Major limitations:	
			1.00
		Moderate AWC (5.0-7.5") to 40"	10.23
109 :			
Scribner silt loam, frequently			
flooded	80	\|Major limitations:	
		Frequent flooding Wetness at a depth of <20"	1.00
			\| 1.00
		\| Moderate AWC (5.0-7.5") to 40"	10.23
110:			
Hustabel sandy loam	80	\|Major limitations:	
		Permeability $\geq 2 \mathrm{n} / \mathrm{hr}$ (seepage) Moderate AWC (5.0-7.5") to 40"	11.00
			10.98
		CEC of 5-20 meq/100g within 401	10.67
112 :			
Westfan loam	80	\|Major limitations:\| Permeability $\geq 2 \mathrm{~h} / \mathrm{hr}$ (seepage)	
			\| 1.00
		Moderate AWC (5.0-7.5") to 40"	10.54
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401	0.07
113 :			
Westfan loam, sodi	85	\|Major limitations:	
			11.00
		Moderate AWC (5.0-7.5") to 40"	10.54
		CEC of 5-20 meq/100g within $40 "$	0.07
114:			
Westfan clay loam-	80	\|Major limitations:	
		Shrink-swell (LEP 3-6)	0.50
		Moderate AWC (5.0-7.5") to 40"	0.09
115 :			
Clear Lake clay, occasionally			
flooded--------------------	90	\|Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		Surface clay $>40 \%$ and smectitic	\|1.00
		Moderate AWC (5.0-7.5") to 40"	10.57
116 :			
Clear Lake clay, calcareous,			
occasionally flooded	90	\|Major limitations:	
		\| Shrink-swell (LEP >6)	11.00
		Surface clay $>40 \%$ and smectitic	\|1.00
		Moderate AWC (5.0-7.5") to 40"	0.57
117:			
Clear Lake clay, calcareous,			
frequently flooded--------	90	\|Major limitations:	
		Shrink-swell (LEP >6)	11.00
		Frequent flooding	11.00
		Surface clay $>40 \%$ and smectitic	1.00
118 :			
Clear Lake clay, frequently			
flooded------------------	90	Major limitations: Shrink-swell (LEP >6)	
		\| Shrink-swell (LEP >6)	11.00
		Frequent flooding	\|1.00
		\| Surface clay $>40 \%$ and smectitic	\| 1.00

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	Pct.	Limitation	\| Value	
	1	,		
	\|		\|	
124 :				
Moonbend silt loam, occasionally				
flooded------------------------	80	\|Major limitations:		
		\| Shrink-swell (LEP 3-6)	0.92	
		Occasional flooding	0.50	
		Moderate AWC (5.0-7.5") to 40"	10.12	
125 :				
Moonbend silt loam	80	\|Major limitations:		
		Shrink-swell (LEP 3-6)	0.92	
		\| Moderate AWC (5.0-7.5") to 40"	0.12	
126 :				
Moonbend silt loam, frequently				
flooded-----------------------	80	\|Major limitations:		
		\| Frequent flooding	11.00	
		\| Shrink-swell (LEP 3-6)	10.92	
		Moderate AWC (5.0-7.5") to 40"	10.12	
127:				
Mallard clay loam	85	\|Major limitations:		
		\| Wetness at a depth of 20-60"	0.59	
		\| Shrink-swell (LEP 3-6)	0.50	
		Moderate AWC (5.0-7.5") to 40"	0.29	
128:				
Mallard loam	85	\|Major limitations:		
		\| Shrink-swell (LEP >6)	1.00	
		Wetness at a depth of 20-60"	10.59	
		\| Moderate AWC (5.0-7.5") to 40"	0.27	
129:				
Mallard clay loam, occasionally				
flooded----------------------	85	\|Major limitations:		
		\| Wetness at a depth of 20-60"	10.59	
		Shrink-swell (LEP 3-6)	10.50	
		Occasional flooding	0.50	
130:				
Corbiere silt loam--------------	85	\|Major limitations:		
		\| Shrink-swell (LEP >6)	11.00	
		\| SAR of 4-13 mmohs/cm	10.98	
		\| Wetness at a depth of 20-60"	10.89	
131:				
Corbiere silt loam, frequently				
flooded-----------------------	85	\|Major limitations:		
		\| Shrink-swell (LEP >6)	11.00	
		\| Frequent flooding	11.00	
		SAR of 4-13 mmohs/cm	10.98	
133 :				
Corbiere silt loam, occasionally \|				
flooded-	85	\|Major limitations:		
		\| Shrink-swell (LEP >6)	11.00	
		\| SAR of 4-13 mmohs/cm	10.98	
		\| Wetness at a depth of 20-60"	10.89	
136:				
Colusa loam-	85	\|Major limitations:		
		\| Low AWC (<5.0") to 40"	11.00	
		\| SAR of >13 mmohs/cm	11.00	
		\| EC of >8 mmohs/cm	1.00	

Table 5.--Limitations Affecting Irrigated Cropland--Continued

| Map symbol and soil name | \|Pct.| | Limitation | \| Value |
| :---: | :---: | :---: | :---: |
| | | | |
| 141: | | | |
| | | | |
| Myers clay------------------------ | 90 | \|Major limitations: | |
| | | Shrink-swell (LEP >6) | 1.00 |
| | | Surface clay $>40 \%$ and smectitic | 1.00 |
| | | Permeability <.2"/hr in surface | 1.00 |
| | | | |
| 144: | | | |
| Hillgate clay loa | 85 | \|Major limitations: | |
| | | \| Low AWC (<5.0") to 40" | 1.00 |
| | | Abrupt textural change | 1.00 |
| | | Surface clay $20-40 \%$ and smectitic | 0.68 |
| | | | |
| 145 : | | | |
| Hillgate loam | 90 | \|Major limitations: | |
| | | Low AWC (<5.0") to 40" | 1.00 |
| | | Abrupt textural change | 1.00 |
| | | CEC of 5-20 meq/100g within 40 " | 0.51 |
| | | | |
| 147: | | | |
| Hillgate loa | 90 | \| Major limitations: | |
| | | \| Low AWC (<5.0") to 40" | 1.00 |
| | | Abrupt textural change | 1.00 |
| | | CEC of 5-20 meq/100g within 40 " | 0.51 |
| | | | |
| 150: | | | |
| Arbuckle sandy loam--------------\| | 85 | \|Major limitations: | |
| | | \| Low AWC (<5.0") to 40" | 1.00 |
| | | \| Permeability $\geq 2 \mathrm{c} / \mathrm{hr}$ (seepage) | 11.00 |
| | | Shrink-swell (LEP 3-6) | 0.50 |
| | | | |
| 151: | | | |
| Arbuckle sandy loam | 50 | | |
| | | \| Low AWC (<5.0") to 40" | 1.00 |
| | | Permeability $\geq 2 \mathrm{l} / \mathrm{hr}$ (seepage) | 1.00 |
| | | Shrink-swell (LEP 3-6) | 10.50 |
| | | | |
| Hillgate loam--------------------\| | 40 | \|Major limitations: | |
| | | \| Low AWC (<5.0") to 40" | \| 1.00 |
| | | Abrupt textural change | \|1.00 |
| | | \| CEC of 5-20 meq/100g within 401 | 0.51 |
| | | | |
| 152 : | | | |
| Arbuckle gravelly loam-----------\| | 85 | \|Major limitations: | |
| | | Moderate AWC (5.0-7.5") to 40" | 0.86 |
| | | Shrink-swell (LEP 3-6) | 0.50 |
| | | | |
| 155 : | | | |
| Alcapay clay----------------------- | 90 | \|Major limitations: | |
| | | \| Shrink-swell (LEP >6) | \| 1.00 |
| | | Surface clay $>40 \%$ and smectitic | 11.00 |
| | | EC of 4-8 mmohs/cm | 0.75 |
| | | | |
| 160: | | | |
| Grandbend loam- | 80 | \|Major limitations: | |
| | | Wetness at a depth of 20-60" | 10.74 |
| | | Moderate AWC (5.0-7.5") to 40" | 10.51 |
| | | Shrink-swell (LEP 3-6) | 10.50 |
| | | | |
| 170: | | | |
| Vina loam, frequently flooded-----\| | 80 | | |
| | | \| Frequent flooding | \| 1.00 |
| | | CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401 | 10.67 |
| | | \| Moderate AWC (5.0-7.5") to 40" | 0.50 |
| | | | |

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\mid Pct. \mid	\| Limitation	\| Value		
171:					
Vina loam-	85	\| Major limitations:			
		CEC of 5-20 meq/100g within 401	0.67		
		\| Moderate AWC (5.0-7.5") to 40"	0.50		
172 :					
Vina fine sandy loam, frequently					
flooded------------------------\|	80	\|Major limitations:			
		Frequent flooding	1.00		
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within $40 \prime \prime$	0.67		
			0.52		
		Moderate AWC (5.0-7.5") to 40"			
174:					
Vina loam, occasionally flooded---\|	85	\|Major limitations:			
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401Occasional flooding	0.67		
			0.50		
		Moderate AWC (5.0-7.5") to 40"	0.50		
175:					
Tujunga loam, overwash,					
frequently flooded----	85	\|Major limitations:			
		\| Low AWC (<5.0") to 40"	1.00		
		Permeability $\geq 2 \mathrm{n} / \mathrm{hr}$ (seepage)	\| 1.00		
		CEC of <5 meq/100g within 401	\| 1.00		
176:					
Columbia fine sandy loam,					
frequently flooded------	80	\|Major limitations:			
		\| Permeability $\geq 2 \mathrm{c} / \mathrm{hr}$ (seepage)	\| 1.00		
		\| Frequent flooding	\| 1.00		
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401	0.67		
177:					
Holillipah loamy sand, channeled--\|	80	\| Major limitations:			
		\| Low AWC (<5.0") to 40"	1.00		
		Permeability $\geq 2 \mathrm{l} / \mathrm{hr}$ (seepage)	\| 1.00		
		CEC of <5 meq/100g within 400	1.00		
185:					
Riverwash----------------------\|	95	\|Major limitations:			
		\| Low AWC (<5.0") to 40"	1.00		
		Permeability $\geq 2 \mathrm{n} / \mathrm{hr}$ (seepage)	1.00		
		\| CEC of $<5 \mathrm{meq} / 100 \mathrm{~g}$ within 40 "	1.00		
187:					
Westfan loam, occasionally					
flooded-----------------	85	\|Major limitations:			
		Permeability $\geq 2 \mathrm{~m} / \mathrm{hr}$ (seepage) Moderate AWC (5.0-7.5") to 40"	1.00		
			10.54		
		Occasional flooding	0.50		
188:					
Westfan loam, clay substratum----\|	80	\|Major limitations:			
			10.50		
		\| Moderate AWC (5.0-7.5") to 40"	10.25		
189 :					
Arand very gravelly sandy loam----\|	85	Major limitations:			
		Low AWC (<5.0") to 40"	11.00		
		Permeability $\geq 2 \mathrm{~N} / \mathrm{hr}$ (seepage)	11.00		
		CEC of <5 meq/ 100 g within 40 "	11.00		
			\|		

Table 5.--Limitations Affecting Irrigated Cropland--Continued

| Map symbol and soil name | \|Pct.| | Limitation | \| Value |
| :---: | :---: | :---: | :---: |
| | | , | |
| 190: | | | |
| | | | |
| Arand very gravelly loam---------\| | 85 | \|Major limitations: | |
| | | Low AWC (<5.0") to 40" | 1.00 |
| | | Permeability $\geq 2 \mathrm{~m} / \mathrm{hr}$ (seepage) | 1.00 |
| | | CEC of <5 meq/100g within 401 | 1.00 |
| | | | |
| 193: | | | |
| Westfan gravelly loam------------- | 80 | \|Major limitations: | |
| | | Moderate AWC (5.0-7.5") to 40" | 0.86 |
| | | Shrink-swell (LEP 3-6) | 0.50 |
| | | | |
| 200: | | | |
| Clear Lake clay, occasionally | | | |
| | 90 | | |
| | | Shrink-swell (LEP >6) | 1.00 |
| | | Surface clay $>40 \%$ and smectitic | 1.00 |
| | | Moderate AWC (5.0-7.5") to 40" | 0.57 |
| | | | |
| 204: | | | |
| Capay clay, occasionally flooded--\| | 90 | \|Major limitations: | |
| | | Shrink-swell (LEP >6) | 1.00 |
| | | Permeability <.2"/hr in surface | 1.00 |
| | | Surface clay $>40 \%$ and smectitic | 1.00 |
| | | | |
| 205 : | | | |
| Capay clay | 90 | \|Major limitations: | |
| | | \| Shrink-swell (LEP >6) | \| 1.00 |
| | | Permeability <.2"/hr in surface | \| 1.00 |
| | | Surface clay $>40 \%$ and smectitic | |
| | | | |
| 206: | | | |
| Capay clay | 90 | \|Major limitations: | |
| | | Shrink-swell (LEP >6) | \| 1.00 |
| | | Permeability <.2"/hr in surface | 11.00 |
| | | Surface clay $>40 \%$ and smectitic | 11.00 |
| | | | |
| 210: | | | |
| Corval loam | 85 | \|Major limitations: | |
| | | Shrink-swell (LEP 3-6) | 0.50 |
| | | CEC of 5-20 meq/100g within 401 | 10.33 |
| | | Moderate AWC (5.0-7.5") to 40" | 10.09 |
| | | | |
| 211: | | | |
| Corval clay loam | 85 | \|Major limitations: | |
| | | \| Shrink-swell (LEP 3-6) | |
| | | \| Moderate AWC (5.0-7.5") to 40" | 10.00 |
| | | | |
| 212 : | | | |
| Ayar clay- | 85 | | |
| | | \| Shrink-swell (LEP >6) | 11.00 |
| | | Surface clay $>40 \%$ and smectitic | 11.00 |
| | | Moderate AWC (5.0-7.5") to 40" | 10.43 |
| | | | |
| 213 : | | | |
| Ayar clay | 85 | \|Major limitations: | |
| | | \| Shrink-swell (LEP >6) | \| 1.00 |
| | | Surface clay $>40 \%$ and smectitic | 11.00 |
| | | Moderate AWC (5.0-7.5") to 40" | 0.43 |
| | | | |
| 215: | | | |
| Altamont silty clay--------------\| | 45 | \|Major limitations: | |
| | | Shrink-swell (LEP >6) | \| 1.00 |
| | | Surface clay $>40 \%$ and smectitic | \| 1.00 |
| | | Moderate AWC (5.0-7.5") to 40" | 10.43 |
| | | | |

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name		\| Limitation	\| Value
		\|	
		\|	
215:			
Sehorn silty clay------	\| 35	\| Major limitations:	
		Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	\| 1.00
		Low AWC (<5.0") to 40"	\| 1.00
216:			
Altamont silty clay	45	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	11.00
		Moderate AWC (5.0-7.5") to 40"	10.43
Sehorn silty clay	35	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	11.00
		Low AWC (<5.0") to 40"	11.00
218:			
Sehorn silty clay	45	Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		\| Surface clay $>40 \%$ and smectitic	\| 1.00
		Low AWC (<5.0") to 40"	11.00
Altamont silty clay	35	\| Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	1.00
		Moderate AWC (5.0-7.5") to 40"	10.43
220:			
Altamont silty clay----	85	\| Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		\| Surface clay $>40 \%$ and smectitic	11.00
		\| Moderate AWC (5.0-7.5") to 40"	10.43
221:			
Altamont silty clay	85	\|Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Surface clay $>40 \%$ and smectitic	11.00
		Moderate AWC (5.0-7.5") to 40"	10.43
230:			
Corning clay loam	90	\| Major limitations:	
		\| Low AWC (<5.0") to 40"	
		\| Abrupt textural change	11.00
		Shrink-swell (LEP >6)	1.00
232:			
Maywood gravelly loam,			
occasionally flooded-	85	\|Major limitations:\| Permeability $\geq 2 \mathrm{l} / \mathrm{hr}$ (seepage)	
		Moderate AWC (5.0-7.5") to 40"	10.60
		Occasional flooding	10.50
233:			
Eastpark clay loam	95	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	1.00
		\| Shrink-swell (LEP 3-6)	10.50
		\| CEC of 5-20 meq/100g within 40 "	10.33
241:			
Contra Costa loam-	55	Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	10.97
		Depth to bedrock between 20 and 40"	0.46

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\|Pct.	Limitation	\| Value
		\|	
241:			
Altamont silty cla	35	\|Major limitations:	
		Shrink-swell (LEP >6)	\| 1.00
		\| Surface clay $>40 \%$ and smectitic	\| 1.00
		Moderate AWC (5.0-7.5") to 40"	0.43
253 :			
Millsholm loam	55	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	1.00
		\| Depth to bedrock <20"	11.00
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 400	10.33
Altamont silty clay	20	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	\| 1.00
		Moderate AWC (5.0-7.5") to 40"	10.43
Rock outcrop	15	Not rated	\|---
255:			
Millsholm loam	55	\|Major limitations:	
		Low AWC (<5.0") to 40"	11.00
		Depth to bedrock <20"	1.00
		\| CEC of 5-20 meq/100g within 40 "	10.33
Rock outcrop-	35	Not rated	\|---
257 :			
Millsholm loam	50	\|Major limitations:	
		Low AWC (<5.0") to 40"	11.00
		\| Depth to bedrock <20"	11.00
		\| CEC of 5-20 meq/100g within 40 "	10.33
		\|	
Capay clay	35	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Permeability <.2"/hr in surface	11.00
		\| Surface clay $>40 \%$ and smectitic	1.00
261:			
Millsholm loam	60	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	11.00
		Depth to bedrock <20"	11.00
		\| CEC of 5-20 meq/100g within 40 "	10.33
Altamont silty clay	25	\|Major limitations:	
		\| Shrink-swell (LEP >6)	
		Surface clay $>40 \%$ and smectitic	1.00
		Moderate AWC (5.0-7.5") to 40"	10.43
270:			
Balcom silt loam	55	\|Major limitations:	
		\| Moderate AWC (5.0-7.5") to 40"	10.65
		CEC of $5-20$ meq/100g within $40 "$	10.50
		\| Depth to bedrock between 20 and 40"	10.32
Ayar clay	30	\|Major limitations:	
		\| Shrink-swell (LEP >6)	11.00
		Surface clay $>40 \%$ and smectitic	11.00
		Moderate AWC (5.0-7.5") to 40"	10.43

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\| Pct. ${ }^{\text {\| }}$	Limitation	\| Value
		1	
		1 \|	
271:			
Balcom silt loam	55	\| Major limitations:	
		Moderate AWC (5.0-7.5") to 40"	10.65
		CEC of 5-20 meq/100g within 40 "	10.50
		Depth to bedrock between 20 and 40"	\| 0.32
Ayar clay------------------------	30	\|Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Surface clay $>40 \%$ and smectitic	1.00
		Moderate AWC (5.0-7.5") to 40"	10.43
275:			
Goldeagle clay loa	45	\| Major limitations:	
		Moderate AWC (5.0-7.5") to 40"	10.54
		Shrink-swell (LEP 3-6)	0.50
Positas gravelly sandy loam------\|	25	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	\| 1.00
		\| Permeability ≥ 2 "/hr (seepage)	1.00
		Shrink-swell (LEP >6)	11.00
Balcom silt loam-	15	\|Major limitations:	
		Moderate AWC (5.0-7.5") to 40"	0.65
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401	10.50
		Depth to bedrock between 20 and 40"\|	0.32
276:			
Positas gravelly sandy loam------ \|	90	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	11.00
		\| Permeability $\geq 2 \mathrm{~F} / \mathrm{hr}$ (seepage)	1.00
		Shrink-swell (LEP >6)	1.00
280:			
Skyhigh gravelly clay loam--------\|	45	\| Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Shrink-swell (LEP >6)	1.00
		Depth to bedrock between 20 and 40"\|	0.48
Millsholm loam------------------- \|	30		
		Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	1.00
		CEC of 5-20 meq/100g within 40 "	10.33
300 :			
Contra Costa loam	50	\|Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	10.97
		Depth to bedrock between 20 and 40"\|	0.46
Millsholm loam------------------	40		
		Low AWC (<5.0") to 40"	11.00
		Depth to bedrock <20"	11.00
		CEC of 5-20 meq/100g within 401	10.33
305:			
Contra Costa loam	85	\|Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	10.97
		Depth to bedrock between 20 and 40"\|	10.46

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\| Pct.	Limitation	\| Value
	1		
	\|		
311:			
Contra Costa loam	85	\|Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	10.97
		Depth to bedrock between 20 and 40"	0.46
312 :			
Saltcanyon loam	90	\|Major limitations:	
		Shrink-swell (LEP 3-6)	10.50
		Moderate AWC (5.0-7.5") to 40"	10.38
		CEC of 5-20 meq/100g within $40 "$	0.17
313 :			
Saltcanyon loam	90		
		Shrink-swell (LEP 3-6)	0.50
		\| Moderate AWC (5.0-7.5") to 40"	10.38
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 40 "	\| 0.17
315 :			
Mallard clay loa	90	\|Major limitations:	
		Shrink-swell (LEP 3-6)	0.50
		\| Moderate AWC (5.0-7.5") to 40"	$\mid 0.29$
316:			
Hillgate loam	90	\|Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Abrupt textural change	1.00
		\| CEC of 5-20 meq/100g within 401	10.51
320:			
Millsholm loam	85		
		Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	1.00
		\| CEC of 5-20 meq/100g within 40"	10.33
329:			
Sehorn silty clay	40	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		Surface clay $>40 \%$ and smectitic	11.00
		Low AWC (<5.0") to 40"	11.00
Millsholm loam-	30		
		Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	1.00
		CEC of 5-20 meq/ 100 g within 40 "	10.33
Altamont silty clay	15	\|Major limitations:	
		\| Shrink-swell (LEP >6)	11.00
		Surface clay $>40 \%$ and smectitic	11.00
		\| Moderate AWC (5.0-7.5") to 40"	10.43
330:			
Millsholm loam-	60		
		Low AWC (<5.0") to 40"	11.00
		Depth to bedrock <20"	1.00
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 40 "	10.33
Contra Costa loam	25	\|Major limitations:	
		\| Shrink-swell (LEP >6)	\| 1.00
		\| Moderate AWC (5.0-7.5") to 40"	10.97
		\| Depth to bedrock between 20 and 40"	0.46

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\mid Pct. \mid	Limitation	\| Value
		,	
346:			
Millsholm loa	20	\|Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	1.00
		CEC of 5-20 meq/100g within 40 "	0.33
Sleeper clay loam---------------- \|	20		
		\| Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	0.46
		CEC of 5-20 meq/100g within 401	0.17
347:			
Boar loam	45	\| Major limitations:	
		Shrink-swell (LEP >6)	1.00
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 400	0.33
		Moderate AWC (5.0-7.5") to 40"	0.33
Sleeper clay loam----------------\|	40	\|Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	0.46
		\| CEC of 5-20 meq/100g within 40 "	0.17
348:			
Boar loam-	45	\|Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		CEC of 5-20 meq/100g within 401	0.33
		Moderate AWC (5.0-7.5") to 40"	0.33
Sleeper clay loam-----------------\|	40	\| Major limitations:	
		Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	0.46
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 401	0.17
350:			
Haploxererts	80		
		Shrink-swell (LEP >6)	1.00
		Moderate AWC (5.0-7.5") to 40"	0.63
		CEC of 5-20 meq/100g within 401	0.33
355 :			
Venado clay	80	\| Major limitations:	
		\| Shrink-swell (LEP >6)	1.00
		Permeability <.2"/hr in surface	1.00
		Wetness at a depth of 20-60"	0.89
360:			
Bearvalley gravelly sandy loam----\|	85	\|Major limitations:	
		Low AWC (<5.0") to 40"	\| 1.00
		\| Permeability ≥ 2 "/hr (seepage)	11.00
		\| CEC of 5-20 meq/100g within 40 "	10.97
365 :			
Leesville clay loam--------------\|	85		
		Permeability $\geq 2 \mathrm{c} / \mathrm{hr}$ (seepage)	11.00
		Low AWC (<5.0") to 40"	11.00
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 40 "	10.83
366:			
Leesville clay loam--------------\|	85	\|Major limitations:	
		Permeability $\geq 2 \mathrm{l} / \mathrm{hr}$ (seepage)	11.00
		Low AWC (<5.0") to 40"	11.00
		\| CEC of 5-20 meq/100g within 400	0.83

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\mid Pct.	Limitation	\| Value
		,	
		\|	
564 :			
Fouts gravelly loa	35	\|Major limitations:	
		Low AWC (<5.0") to 40"	\| 1.00
		Shrink-swell (LEP >6)	1.00
		Depth to bedrock between 20 and 40"\|0.	0.48
Yorkville clay loam-------------- \|	35	\| Major limitations:\| Shrink-swell (LEP >6)	
			1.00
		Moderate AWC (5.0-7.5") to 40"	10.55
		CEC of 5-20 meq/100g within 401	\| 0.17
Squawrock gravelly loam----------\|	15	\|Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Shrink-swell (LEP 3-6)	10.50
		Depth to bedrock between 20 and 40"\|	0.48
570 :			
Endoaquolls, frequently ponded----	90	\|Major limitations:	
		Wetness at a depth of <20"	1.00
		Shrink-swell (LEP 3-6)	10.50
		Moderate AWC (5.0-7.5") to 40"	0.13
590:			
Neuns very gravelly loam---------\|	35	Major limitations: Low AWC (<5.0") to 40"	
		Depth to bedrock between 20 and 40"\|0.	1.00 0.48
Marpa very gravelly sandy loam----\|	30	\|Major limitations:	
		Low AWC (<5.0") to 40"	11.00
		CEC of 5-20 meq/100g within 401	10.67
		Depth to bedrock between 20 and 40"	
Goulding gravelly loam-----------\|	20	\|Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	1.00
		CEC of 5-20 meq/100g within 40 "	10.83
591:			
Neuns very gravelly loam	35	\|Major limitations: ${ }^{\text {\| Low AWC (}<5.0 " \text {) to } 40 "}$	
			1.00
		Depth to bedrock between 20 and 40"	
Sheetiron gravelly sandy loam----\|	30	\|Major limitations:	
		Low AWC (<5.0") to 40"	1.00
		Permeability $\geq 2 \mathrm{k} / \mathrm{hr}$ (seepage)	1.00
		CEC of 5-20 meq/100g within 401	10.67
Goulding gravelly loam-----------\|	20	\|Major limitations:	
		\| Low AWC (<5.0") to 40"	1.00
		Depth to bedrock <20"	11.00
		CEC of 5-20 meq/100g within 401	10.83
592 :			
Neuns very gravelly loam	35	Major limitations:Low AWC (<5.0") to 40"	
			1.00
		Depth to bedrock between 20 and 40"\|0.	10.48
Goulding gravelly loam-----------\|	25	\| Major limitations:	
		Low AWC (<5.01) to 40"	1.00
		Depth to bedrock <20"	1.00
		CEC of 5-20 meq/100g within 40 "	10.83

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Table 5.--Limitations Affecting Irrigated Cropland--Continued

Map symbol and soil name	\|Pct.	\| Limitation	Value	
		\|		
		\|		
610:				
Bamtush very gravelly loam	25	\|Major limitations:		
		\| Low AWC (<5.0") to 40"	1.00	
		CEC of 5-20 meq/100g within 40 "	0.33	
Goulding gravelly loam-	20	\| Major limitations:		
		Low AWC (<5.0") to 40"	1.00	
		\| Depth to bedrock <20"	1.00	
		\| CEC of 5-20 meq/100g within 40 "	0.83	
650 :				
Bamtush very gravelly loam-------\|	55	\|Major limitations:		
		Low AWC (<5.0") to 40"	1.00	
		CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within 40 "	0.33	
Marpa very gravelly sandy loam----\|	30	\| Major limitations:		
		Low AWC (<5.0") to 40"	1.00	
		\| CEC of $5-20 \mathrm{meq} / 100 \mathrm{~g}$ within $40 "$	0.67	
		Depth to bedrock between 20 and 40"\|	0.48	

The interpretation for irrigated cropland evaluates the following soil properties at varying depths in the soil: available water capacity (AWC), permeability (which can result in seepage if too rapid and saturation of the surface layer if too slow), content of calcium carbonate, root restrictions, shrink-swell potential as measured by linear extensibility percent (LEP), content of sodium, cation-exchange capacity (CEC), flooding, wetness in the root zone, content of clay or rock fragments (which can limit tillage), content of salts, and depth to bedrock or a cemented pan.
(Yields in the "N" columns are for nonirrigated soils; those in the "I" columns are for irrigated soils. Yields are those that can be expected under a high level of management. Absence of an entry indicates that data were not estimated.)

Table 6.--Yields Per Acre of Crops--Continued

Table 6.--Yields Per Acre of Crops--Continued

Table 6.--Yields Per Acre of Crops--Continued

Table 7.--Land Capability Classification
(The land capability system groups soils primarily on the basis of their ability to produce the commonly grown cultivated crops and pasture plants over a long period of time without deteriorating. Land capability placement in California is based on State criteria developed in 1978 and revised in 1992. Absence of an entry indicates that no land capability classification is assigned.)

Map symbol and soil name	Land capability	
	N	I
117:		
Clear Lake clay, calcareous, frequently flooded--\|	4w-2	4w-2
118:		
Clear Lake clay, frequently flooded-	4w-2	4w-2
124:		
Moonbend silt loam, occasionally flooded---------\|	4w-2	2w-2
125:		
Moonbend silt loam-	4 s	1
126:		
Moonbend silt loam, frequently flooded---------	4w-2	4w-2
127:		
Mallard clay loam-----------------------------	4w-3	2w-3
128:		
Mallard loam--	4w-3	2w-3
129:		
Mallard clay loam, occasionally flooded---------\|	4w-3	2w-3
130:		
Corbiere silt loam-	4w-3	2w-3
131:		
Corbiere silt loam, frequently flooded---------	4w-3	4w-3
$133:$		
Corbiere silt loam, occasionally flooded---------\|	4w-3	2w-3
136:		
Colusa loam-------------------------------------- \|	4s-6	4s-6
141:		
Myers clay--	4s-5	2s-5
144:		
Hillgate clay loam------------------------------	4s-3	2s-3
145:		
Hillgate loam-----------------------------------	4s-3	2s-3
147:		
Hillgate loam------------------------------------	4e-3	2e-3
150:		
Arbuckle sandy loam------------------------------	4e-4	2e-4
151:		
Arbuckle sandy loam-----------------------------\|	4e-4	2e-4
Hillgate loam----------------------------------	4e-3	2e-3
152 :		
Arbuckle gravelly loam---------------------------\|	4e-4	2e-4

Table 8.--Prime Farmland
(Only the soils considered prime farmland are listed. Urban or built-up areas of the soils listed are not considered prime farmland. If a soil is prime farmland only under certain conditions, the conditions are specified in parentheses after the soil name.)

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	
100	\|Capay clay loam, 0 to 1 percent slopes, occasionally flooded (where irrigated)	
101	\|Capay silty clay, 0 to 2 percent slopes, frequently flooded (where irrigated)	
102	\|Capay clay loam, 0 to 1 percent slopes (where irrigated)	
107	\|Scribner silt loam, 0 to 1 percent slopes, occasionally flooded (where irrigated and drained)	
108	\mid Scribner silt loam, 0 to 1 percent slopes (where irrigated and drained)	
112	\|Westfan loam, 0 to 2 percent slopes (where irrigated)	
114	\|Westfan clay loam, 0 to 1 percent slopes (where irrigated)	
115	\mid Clear Lake clay, 0 to 1 percent slopes, occasionally flooded (where irrigated and drained)	
116	\|Clear Lake clay, calcareous, 0 to 2 percent slopes, occasionally flooded (where irrigated and	drained)
124	\|Moonbend silt loam, 0 to 2 percent slopes, occasionally flooded (where irrigated)	
125	\|Moonbend silt loam, 0 to 2 percent slopes (where irrigated)	
127	\|Mallard clay loam, 0 to 1 percent slopes (where irrigated)	
128	$\mid \mathrm{Mallard}$ loam, 0 to 1 percent slopes (where irrigated)	
129		
130	\|Corbiere silt loam, 0 to 1 percent slopes (where irrigated)	
133	\|Corbiere silt loam, 0 to 2 percent slopes, occasionally flooded (where irrigated)	
141	\|Myers clay, 0 to 2 percent slopes (where irrigated)	
144	\|Hillgate clay loam, 0 to 2 percent slopes (where irrigated)	
145	\|Hillgate loam, 0 to 2 percent slopes (where irrigated)	
147	\|Hillgate loam, 1 to 5 percent slopes (where irrigated)	
150	\|Arbuckle sandy loam, 1 to 5 percent slopes (where irrigated)	
151	\|Arbuckle-Hillgate complex, 1 to 5 percent slopes (where irrigated)	
152	\|Arbuckle gravelly loam, 1 to 5 percent slopes (where irrigated)	
160	\|Grandbend loam, 0 to 2 percent slopes (where irrigated)	
171	\mid Vina loam, 0 to 2 percent slopes (where irrigated)	
174	\|Vina loam, 0 to 2 percent slopes, occasionally flooded (where irrigated)	
176	\|Columbia fine sandy loam, 0 to 2 percent slopes, frequently flooded (where irrigated)	
187	\|Westfan loam, 0 to 2 percent slopes, occasionally flooded (where irrigated)	
188	\|Westfan loam, clay substratum, 0 to 2 percent slopes (where irrigated)	
193	\|Westfan gravelly loam, 0 to 2 percent slopes (where irrigated)	
200	\|Clear Lake clay, 0 to 2 percent slopes, occasionally flooded (where irrigated and drained)	
204	\|Capay clay, 0 to 3 percent slopes, occasionally flooded (where irrigated)	
205	\|Capay clay, 0 to 3 percent slopes (where irrigated)	
210	\|Corval loam, 0 to 3 percent slopes (where irrigated)	
211	\|Corval clay loam, 0 to 3 percent slopes (where irrigated)	
232		
312	\|Saltcanyon loam, 1 to 5 percent slopes (where irrigated)	
315	\|Mallard clay loam, 2 to 5 percent slopes (where irrigated)	
365	\|Leesville clay loam, 2 to 5 percent slopes (where irrigated)	
366	\|Leesville clay loam, 0 to 2 percent slopes (where irrigated)	

Table 9.--Additional Farmland of Statewide Importance
(Urban or built-up areas of the soils listed in this table are not considered farmland of statewide importance.)

	Soil name
$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	
110	\|Hustabel sandy loam, 0 to 1 percent slopes
206	\|Capay clay, 5 to 9 percent slopes
220	\|Altamont silty clay, 5 to 9 percent slopes
230	\|Corning clay loam, 1 to 5 percent slopes
233	\|Eastpark clay loam, 0 to 2 percent slopes
313	\|Saltcanyon loam, 5 to 9 percent slopes
316	\|Hillgate loam, 5 to 9 percent slopes
355	\mid Venado clay, 0 to 2 percent slopes
370	\mid Livermore very gravelly loam, 5 to 9 percent slopes

Table 10a.--Storie Index
(The California Storie index expresses numerically the relative degree of suitability of a soil for general intensive agricultural uses at the time of evaluation. The rating is based on soil characteristics only and is obtained by evaluating such factors as soil depth, texture of the surface soil, subsoil characteristics, and surface relief.)

Map symbol and soil name	Storie index				
	A	B	C	X	Index
100:					
Capay clay loam, occasionally flooded------------ \|	100	85	100	85	72
101:					
Capay silty clay, frequently flooded-------------- \|	100	85	100	75	49
102:					
Capay clay loam------------------------------------1\|	100	85	100	85	72
103:					
	100	85	100	75	64
104:					
Willows silty clay, frequently flooded-----------	100	70	100	30	21
105:					
Willows silty clay, occasionally flooded--------	100	70	100	30	21
106:					
Willows silty clay	100	70	100	30	21
107:					
Scribner silt loam, occasionally flooded--------	100	100	100	40	40
108:					
Scribner silt loam--------------------------------	100	100	100	40	40
109:					
Scribner silt loam, frequently flooded-----------\|	100	100	100	30	30
110:					
Hustabel sandy loam--------------------------------1\|	100	95	100	95	90
112:					
Westfan loam---------------------------------------1\|	100	100	100	100	100
113:					
Westfan loam, sodic-------------------------------1\|	100	100	100	60	60
114:					
Westfan clay loam----------------------------------1\|	100	90	100	100	90
115:					
Clear Lake clay, occasionally flooded------------- \|	100	70	100	40	28
116:					
Clear Lake clay, calcareous, occasionally flooded\|	100	88	100	40	32
117:					
Clear Lake clay, calcareous, frequently flooded--\|	100	80	100	30	24
118:					
Clear Lake clay, frequently flooded---------------- \|	100	70	100	30	21
124 :					
Moonbend silt loam, occasionally flooded---------	100	100	100	95	95

Map symbol and soil name	Storie index				
	A	B	c	x	\| Index
125 :					
Moonbend silt loam-	100	100	100	100	100
126 :					
Moonbend silt loam, frequently flooded-	100	100	100	90	90
127 :					
Mallard clay loam-	95	90	100	100	86
128 :					
Mallard loam-	95	100	100	100	95
129 :					
Mallard clay loam, occasionally flooded----------\|	95	90	100	95	81
130:					
Corbiere silt loam-	100	100	100	60	60
131:					
Corbiere silt loam, frequently flooded-	100	100	100	50	50
133 :					
Corbiere silt loam, occasionally flooded--------	100	100	100	55	55
136 :					
Colusa loam--------------------------------------	100	100	100	\| 80×10	8
141:					
Myers clay--	100	70	100	95	67
144:					
Hillgate clay loam-------------------------------	50	90	100	100	45
145:					
Hillgate loam-----------------------------------\|	50	100	100	100	50
147:					
Hillgate loam-----------------------------------	50	100	95	100	48
150 :					
Arbuckle sandy loam-	80	95	95	95	69
151:					
Arbuckle sandy loam-----------------------------	80	95	95	95	69
Hillgate loam-----------------------------------	50	100	95	95	45
152 :					
Arbuckle gravelly loam--------------------------	85	80	95	80	52
155:					
Alcapay clay------------------------------------\|	100	85	100	40	34
160:					
Grandbend loam---------------------------------\|	100	100	100	70	70
170:					
Vina loam, frequently flooded-------------------	100	100	100	60	60
171:					
Vina loam-------------------------------------\|	100	100	100	100	100

Map symbol and soil name	Storie index				
	A	B	C	x	Index
172:					
Vina fine sandy loam, frequently flooded--------	100	100	100	60	60
174:					
Vina loam, occasionally flooded-	100	100	100	75	75
175 :					
Tujunga loam, overwash, frequently flooded-------	95	100	95	40	36
176:					
Columbia fine sandy loam, frequently flooded-----\|	100	100	100	55	55
177:					
Holillipah loamy sand, channeled----------------\|	100	80	100	60	48
$185 \text { : }$					
Riverwash	80	10	95	60×75	3
$187 \text { : }$					
Westfan loam, occasionally flooded-	100	100	100	95	95
188:					
Westfan loam, clay substratum------------------\|	95	100	100	100	95
189 :					
Arand very gravelly sandy loam------------------ \|	100	50	100	90	45
190 :					
Arand very gravelly loam-	100	60	100	90	54
193 :					
Westfan gravelly loam---------------------------	100	80	100	100	80
$200:$					
Clear Lake clay, occasionally flooded-----------\|	90	70	100	34	21
$204:$					
Capay clay, occasionally flooded-----------------\|	90	70	95	72	43
$205:$					
Capay clay---\|	90	70	95	81	48
206:					
Capay clay-------------------------------------\|	90	70	90	81	46
210:					
Corval loam--	90	100	95	100	90
211:					
Corval clay loam----------------------------------	100	90	100	100	90
212:					
Ayar clay--------------------------------------- \|	100	80	85	30	20
213:					
Ayar clay--	100	80	70	30	17
215:					
Altamont silty clay------------------------------	90	70	70	75	33
Sehorn silty clay-------------------------------	70	70	70	75	26

Map symbol and soil name	Storie index				
	A	B	C	x	Index
216:					
Altamont silty clay------------------------------	90	70	80	75	38
Sehorn silty clay--------------------------------	70	70	80	75	29
218:					
Sehorn silty clay--------------------------------	70	70	40	75	15
Altamont silty clay------------------------------	90	70	40	75	19
220:					
Altamont silty clay-----------------------------\|	90	70	90	75	43
221:					
Altamont silty clay-----------------------------\|	90	70	80	75	38
230:					
Corning clay loam-------------------------------\|	25	85	95	95	19
232:					
Maywood gravelly loam, occasionally flooded------\|	100	80	100	95	76
233:					
Eastpark clay loam-------------------------------	60	85	95	60	29
241:					
Contra Costa loam---------------------------------	70	100	40	95	27
Altamont silty clay-----------------------------	90	70	40	75	19
253:					
Millsholm loam----------------------------------	35	100	85	67	20
Altamont silty clay-----------------------------	90	70	85	53	28
255 :					
Millsholm loam---------------------------------\|	35	100	75	67	18
Rock outcrop.					
257:					
Millsholm loam----------------------------------\|	35	100	90	95	30
\|					
Capay clay-------------------------------------\|	90	70	90	81	46
261:					
Millsholm loam---------------------------------	35	100	70	95	23
Altamont silty clay-----------------------------\|	90	70	70	75	33
270:					
Balcom silt loam--------------------------------	80	100	70	30	17
Ayar clay---------------------------------------\|	100	80	70	30	17
271:					
Balcom silt loam--------------------------------	80	100	40	30	10
Ayar clay---------------------------------------\|	100	80	40	30	10
275:					
Goldeagle clay loam------------------------------	65	95	30	30	6

Map symbol and soil name	Storie index									
	A	B	C	x	Index					
275:										
Positas gravelly sandy loam-	50	70	30	100	11					
Balcom silt loam-	80	100	30	30	7					
276:										
Positas gravelly sandy loam-	50	70	40	100	14					
280:										
Skyhigh gravelly clay loam-	70	80	55	100	31					
Millsholm loam--	35	100	55	95	18					
300:										
Contra Costa loam-	70	100	20	95	13					
Millsholm loam-	35	100	20	95	7					
305:										
Contra Costa loam-	70	100	20	95	13					
311:										
Contra Costa loam-	70	100	80	95	53					
312 :										
Saltcanyon loam--	95	100	95	100	90					
$313 \text { : }$										
Saltcanyon loam---	95	100	90	100	86					
$315 \text { : }$										
Mallard clay loam--	95	90	95	100	81					
316:										
Hillgate loam--	50	100	90	95	43					
320 :										
Millsholm loam-	35	100	78	95	26					
329 :										
Sehorn silty clay-	70	70	70	75	26					
Millsholm loam---	35	100	70	95	23					
Altamont silty clay-	90	70	70	75	33					
330 :										
Millsholm loam-	35	100	70	95	23					
Contra Costa loam-	70	95	70	95	43					
331 :										
Sehorn silty clay--	70	70	40	53	10					
Millsholm loam-	35	100	40	67	9					
Rock outcrop.										
332:										
Millsholm loam--	35	100	55	95	18					
Rock outcrop.										

Map symbol and soil name	Storie index									
	A	B	C	x	Index					
334:										
Millsholm loam-	35	100	30	95	10					
Contra Costa loam-	70	95	30	95	19					
337:										
Millsholm loam-	35	100	85	95	28					
Saltcanyon loam-	95	100	85	100	81					
$345:$										
Skyhigh gravelly clay loam-	70	80	70	100	39					
Sleeper clay loam										
Sleeper clay loam-	95	90	70	60	36					
Millsholm loam-	35	100	70	95	23					
346:										
Skyhigh gravelly clay loam-	70	80	40	100	22					
Millsholm loam-	35	100	40	95	13					
Sleeper clay loam-	95	90	40	60	21					
$347:$										
Boar loam--	95	100	70	60	40					
Sleeper clay loam-	95	90	70	60	36					
348:										
Boar loam--	95	90	40	60	21					
Sleeper clay loam-	95	90	40	60	21					
350:										
Haploxererts	70	85	40	60	14					
355:										
Venado clay-	80	70	95	60	32					
360:										
Bearvalley gravelly sandy loam-	80	70	95	60	32					
$365:$										
Leesville clay loam---	90	85	95	60	44					
366:										
Leesville clay loam-	90	85	95	60	44					
370:										
Livermore very gravelly loam-	80	60	90	100	43					
371:										
Buttes gravelly sandy loam-	60	70	40	100	17					
Millsholm loam-	35	100	40	95	13					
519 :										
Guenoc loam------------------------	65	100	85	95	52					

Table 10a.--Storie Index--Continued

Map symbol and soil name	Storie index				
	A	B	c	x	\| Index
520:					
Stonyford gravelly loam-	35	80	70	95	19
Guenoc loam-	65	100	70	95	43
521:					
Stonyford gravelly loam-	35	70	40	95	9
Guenoc loam-	65	100	40	95	29
524:					
Arand very gravelly sandy loam, frequently					
flodded-	100	60	100	75	45
Riverwash	80	10	95	60×75	3
526 :					
Etsel gravelly sandy loam-	25	70	40	95	7
Maymen sandy loam-	35	95	40	80	11
Marpa very gravelly sandy loam-	50	50	40	95	10
527 :					
Maymen sandy loam-	35	95	40	80	11
Etsel gravelly sandy loam	25	70	40	95	7
Speaker gravelly loam-	50	80	40	100	16
528 :					
Maymen sandy loam-	35	95	30	80	8
Etsel gravelly sandy loam-	25	70	30	95	5
Snook gravelly sandy loam-	20	70	30	95	4
529 :					
Maymen sandy loam--	35	95	30	80	8
Etsel gravelly sandy loam-	25	70	30	95	5
Mayacama gravelly coarse sandy loam-	70	65	30	100	14
542 :					
Okiota loam-	55	100	55	60	18
Dubakella gravelly clay loam-	55	80	55	60	15
Henneke sandy loam-	50	95	55	60	16
545 :					
Henneke sandy loam-	50	95	55	42	11
Montara gravelly sandy loam-	20	70	55	42	7
Rock outcrop.					
548 :					
Henneke sandy loam	50	95	40	60	11
	55	100	40	60	13

(The California Storie Index expresses numerically the relative degree of suitability of a soil for commercial timber at the time of evaluation. The rating is based on soil and climatic characteristics and is obtained by evaluating such factors as soil depth, texture of the surface soil, permeability, chemical characteristics, drainage and runoff, and a climatic factor. For soils that are used primarily for general intensive agricultural and range uses, see table 10a.)

Map symbol and soil name	Storie index					
	A	B	C	D	E	Index
557 :						
Neuns very gravelly loam----------------------------1\|	60	95	100	100	95	54
Bamtush very gravelly loam------------------------1\|	95	90	100	100	95	81
	95	90	100	100	95	47
590:						
Neuns very gravelly loam----------------------------1\|	60	95	100	100	100	57
Marpa very gravelly sandy loam---------------------1\|	55	90	100	100	100	50
Goulding gravelly loam-------------------------------1\|	30	95	100	95	100	27
591:						
Neuns very gravelly loam---------------------------1\|	60	95	100	100	100	57
Sheetiron gravelly sandy loam---------------------1\|	60	100	100	100	100	60
Goulding gravelly loam-----------------------------1\|	30	95	100	95	100	27
592 :						
	60	95	100	100	100	57
Goulding gravelly loam----------------------------1\|	30	95	100	95	100	27
Sheetiron gravelly sandy loam-----------------------1\|	60	100	100	100	100	60
596:						
Yollabolly very gravelly loam----------------------1\|	40	95	100	80	100	30
Rock outcrop.						
Freezeout very gravelly sandy loam--------------1\|	55	100	100	100	100	55
597:						
Yollabolly very gravelly loam----------------------- \|	40	95	100	80	100	30
Freezeout very gravelly sandy loam---------------1\|	55	100	100	100	100	55
599:						
Freezeout very gravelly sandy loam----------------1\|	55	100	100	100	100	55
Yollabolly very gravelly loam----------------------1\|	40	95	100	80	100	30
600 :						
Freezeout very gravelly sandy loam--------------1\|	55	100	100	100	100	55
Yollabolly very gravelly loam----------------------1\|	40	95	100	80	100	30
610:						
Neuns very gravelly loam----------------------------1\|	60	95	100	100	100	57
Bamtush very gravelly loam-------------------------1\|	95	90	100	100	100	86

Table 11.--Rangeland Productivity and Characteristic Plant Communities

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total production		Characteristic vegetation	$\begin{aligned} & \text { \| Compo- } \\ & \text { \| sition } \end{aligned}$	
		Kind of year	Dry			
		of year	\|weight			
	\|		\| Lb/acre			Pct
	,	\|				
212, 213:		\|				
Ayar clay------	\| Clayey	\|Favorable	3,500\|	Wild oat	25	
		Normal	2,500	Burclover	10	
	\|	\| Unfavorable	1,400\|	Filaree	10	
				Medusahead	10	
	\|			Ripgut brome	10	
	\|			Soft chess	10	
	,	\|		Mouse barley	5	
		\|		Tomcat clover	5	
				Yellow starthistle	5	
215, 216:	\|					
Altamont siltyclay-------						
	\|Fine loamy	\|Favorable	3,100\|	Soft chess	20	
		\| Normal	2,200	Wild oat	20	
	\|	\| Unfavorable	1,200\|	Filaree	10	
	\|			Ripgut brome	10	
	,			Italian ryegrass	5	
	\|			Blue oak	5	
	\|			Burclover	5	
				Medusahead	5	
		\|	\|	Yellow starthistle	5	
		\|				
Sehorn siltyclay-----						
	Fine loamy	\|Favorable	3,100\|	Soft chess	20	
		\| Normal	2,200\|	Wild oat	20	
		\| Unfavorable	1,200	Filaree	10	
			\mid \|	Ripgut brome	10	
			\|	Italian ryegrass	5	
	\|	\|		Blue oak	5	
			,	Burclover	5	
				Medusahead	5	
				Yellow starthistle	5	
218:	\|	\|	\|			
$\begin{gathered} \text { Sehorn silty } \\ \text { clay------ } \end{gathered}$			\|			
	\|Fine loamy	\| Favorable	3,100\|	Soft chess	20	
		\| Normal	2,200	Wild oat	20	
		\| Unfavorable	1,200	Filaree	10	
			\|		Ripgut brome	10
				Italian ryegrass	5	
				Blue oak	5	
			\mid \|	Burclover	5	
				Medusahead	5	
		\|		Yellow starthistle	5	
Altamont silty						
	Fine loamy	\| Favorable	3,100\|	Soft chess	20	
		\| Normal	2,200	Wild oat	20	
		\| Unfavorable	1,200	Filaree	10	
				Ripgut brome	10	
		\|	\|	Italian ryegrass	5	
	\|	\|		Blue oak	5	
		\|	,	Burclover	5	
			\|	Medusahead	5	
		\|	1 \|	Yellow starthistle	5	
220, 221:Altamont silty						
Altamont silty	\| Clayey		3,500	Wild oat	25	
		Normal	2,500	Burclover	10	
		\| Unfavorable	1,400	Filaree	10	
				Medusahead	10	
				Ripgut brome	10	
				Soft chess	10	
				Blue oak	5	
				Mouse barley	5	
			\|		Yellow starthistle	5

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

\| Ecological site	Total production		Characteristic vegetation	$\begin{aligned} & \text { \|Compo- } \\ & \text { \| sition } \end{aligned}$	
		\|			
	\| Kind of year	Dry			
		\|weight			
,		\| Lb/acre			Pct
\|	I				
329: \|	,	\|		\|	
Altamont silty \|					
clay----------\|Fine loamy	\| Favorable	3,100\|	Soft chess	20	
	\| Normal	2,200\|	Wild oat	20	
\|	\| Unfavorable	1,200	Filaree	10	
,			Ripgut brome	10	
\|			Italian ryegrass	5	
\|			Blue oak	5	
\|			Burclover	5	
\|	\|		Medusahead	5	
\|			Yellow starthistle	5	
\|					
330: \|					
Millsholm loam--\|Shallow loamy	\| Favorable	1,100	Soft chess	20	
\|	\| Normal	800	Filaree	10	
,	Unfavorable	400	Rattail fescue	10	
\|			Wild oat	10	
I			Blue oak	5	
\|			Red brome	5	
\|				\|	
Contra Costa \|					
loam----------\|Fine loamy	\| Favorable	3,100	Soft chess	20	
\|	\| Normal	2,200	Wild oat	20	
-	\|Unfavorable	1,200	Filaree	10	
I	\|		Ripgut brome	10	
,			Italian ryegrass	5	
I			Blue oak	5	
\|			Burclover	5	
,			Medusahead	5	
\|			Yellow starthistle	5	
331: \|				\|	
Sehorn silty \|					
clay----------\|Fine loamy	\| Favorable	3,100	Soft chess	20	
\|	\| Normal	2,200	Wild oat	20	
,	\| Unfavorable	1,200	Filaree	10	
,			Ripgut brome	10	
\|			Italian ryegrass	5	
I			Burclover	5	
\|			Medusahead	5	
\|			Yellow starthistle	5	
I				1	
Millsholm loam--\|Shallow loamy			Soft chess	20	
\|	\| Normal	800	Rattail fescue	10	
\|	Unfavorable	400	Wild oat	10	
\|			Blue oak	\| 5	
\|			Filaree	5	
\|			Red brome	5	
\|			Redstem filaree	5	
\|				1	
Rock outcrop. \|				,	
\|				\|	
332: \|				\|	
Millsholm loam--\|Shallow loamy		1,100	Soft chess	20	
\|	\| Normal	800	Filaree	10	
\|	Unfavorable	400	Rattail fescue	10	
\|			Wild oat	10	
I			Blue oak	5	
\|			Red brome	5	
I				1	
Rock outcrop. \|				\|	
I				\|	

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Ecological site	Total production		Characteristic vegetation		
	Kind of year	Dry			
		\|weight			
\|		\|Lb/acre			Pct
\|	\|				
346: \|					
Skyhigh gravellyclay loam-----\|Loamy (blue oak)	\|			\|	
	\| Favorable	1,400	Filaree	20	
	\| Normal	1,000	Slender oat	20	
	\|Unfavorable	800	Soft chess	20	
			Annual lupine	10	
			Blue oak	5	
			Buckbrush	5	
			Rattail fescue	5	
			Ripgut brome	\| 5	
Millsholm loam--\|Shallow loamy	\| Favorable	1,100	Soft chess	20	
	\| Normal	800	Rattail fescue	10	
	\| Unfavorable	400	Wild oat	10	
			Blue oak	5	
			Filaree	5	
			Red brome	\| 5	
			Redstem filaree	\| 5	
	\| Favorable	3,200	Soft chess	30	
	\| Normal	3,000\|	Wild oat	15	
	\|Unfavorable	1,800	Filaree	\| 10	
			Needlegrass	\| 10	
			Ripgut brome	\| 10	
			Blue oak	\| 5	
			Bluegrass	5	
			Foxtail fescue	5	
347:					
Boar loam------\| Loamy (blue oak)	\| Favorable	1,400	Filaree	20	
	\| Normal	1,000	Slender oat	20	
	\|Unfavorable	800	Soft chess	20	
			Annual lupine	10	
			Blue oak	5	
			Buckbrush	5	
			Rattail fescue	5	
			Ripgut brome	5	
Sleeper clayloam--------					
	\| Favorable	3,200	Soft chess	\| 30	
	\| Normal	3,000\|	Wild oat	\| 15	
	\|Unfavorable	1,800	Filaree	\| 10	
			Needlegrass	\| 10	
			Ripgut brome	\| 10	
			Blue oak	\| 5	
			Bluegrass	\| 5	
			Foxtail fescue	\| 5	
				\|	
348:	\|				
Boar loam-----\| Clayey unstable (annual grass)	\| Favorable	\| 3,000		Soft chess	\| 30
	\| Normal	2,500\|	Wild oat	\| 15	
	\| Unfavorable	2,000\|	Blue oak	\| 10	
			Filaree	\| 10	
	\|		Needlegrass	\| 10	
	\|		Ripgut brome	\| 10	
	\|		Foxtail fescue	\| 5	

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total production		Characteristic vegetation	Composition	
		\| Kind of year	\| Dry			
			\|weight			
	\|		\| Lb/acre			Pct
	\|					
			1			
Livermore very gravelly loam--			,			
	\| Gravelly loamy	\|Favorable	1,400	\|Filaree	20	
		\| Normal	1,000	\|Wild oat	20	
		\| Unfavorable	$600 \mid$	\|Soft chess	15	
	\|		1 \|	Annual lupine	5	
			\mid \|	\| Popcornflower	5	
			\|	\|Rattail fescue	5	
			\|		\|Red brome	5
			\|		\|Ripgut brome	5
			\|	\|Tomcat clover	5	
			\|			
371:			I			
$\begin{aligned} & \text { Buttes gravelly } \\ & \text { sandy loam----- } \end{aligned}$,			
	\| Loamy (blue oak)	\|Favorable	1,100	Filaree	20	
		\| Normal	800	Slender oat	20	
		\| Unfavorable	\| 600		Soft chess	20
			\|		Annual lupine	10
			1 \|	\| Blue oak	5	
			\|		\| Buckbrush	5
			,	\|Rattail fescue	5	
				\|Ripgut brome	5	
Millsholm loam--\|	Shallow loamy	\| Favorable	\| 1,100		Soft chess	20
		\| Normal	800	Rattail fescue	10	
		\| Unfavorable	400	\|Wild oat	10	
				\| Blue oak	5	
				\|Filaree	5	
				\|Red brome	5	
				\|Redstem filaree	5	
564 :						
Fouts gravelly						
loam----------			\| $2,600 \mid$	Soft chess	20	
	grass)	\| Normal	2,200\|	Wild oat	20	
		\| Unfavorable	1,400	\|Broadleaf filaree	10	
			\|		\| Burclover	5
				\|Foxtail fescue	5	
				\| Purple needlegrass	5	
			,			
Yorkville clay loam-			,			
	\| Clayey unstable (annual grass)	\|Favorable	3,300\|	Wild oat	30	
		\| Normal	2,500	Soft chess	15	
		\| Unfavorable	1,200	\| Burclover	10	
				Filaree	10	
			,	\|Ripgut brome	10	
				\|Foxtail fescue	5	
				\| Purple needlegrass	5	
			\|			
Squawrockgravelly loam--			,			
	Very gravelly loamy (annual	\|Favorable	\| 2,600		Soft chess	20
	grass)	\| Normal	\| 2,200		Wild oat	20
		\| Unfavorable	\| 1,400		\|Broadleaf filaree	10
			\|	\| Burclover	5	
			\|	\|Foxtail fescue	5	
				\| Purple needlegrass	5	
					\|	

Table 11.--Rangeland Productivity and Characteristic Plant Communities--Continued

| Map symbol and soil name | Ecological site | Total production | | Characteristic vegetation | \| Compo|sition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | - | | | |
| | | \|Kind of year | \| Dry | | |
| | | | \|weight | | |
| | | | \| Lb/acre | | | Pct |
| | | | , | | |
| 570 : | | | | | |
| Endoaquolls, | | | | | |
| frequently | | | | | |
| ponded--- | Semi-wet meadow | \| Favorable | 4,000 | Carex | 25 |
| | | \| Normal | 3,000 | \|Redtop | 25 |
| | | \| Unfavorable | 2,500 | \|Rush | 25 |
| | | | | \| Clover | 5 |
| | | | | \|Miscellaneous annual forbs | 5 |
| | | | | | |

|Table 12.--Recreational Development (Part 1)

The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not liminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds		
		Limitation	\|Value		Limitation	\| Value	Limitation	\|Value
		1				\|		
		,				\|		
115:								
Clear Lake clay, occasionally								
flooded-----------------------	90	\| Severe		\| Moderate		Moderate		
		Flooding \geq rare	11.00	Surface clay $>40 \%$ and dry	10.50	Occasional flooding	10.50	
		Surface clay >40\% and dry		climate		Surface clay >40\% and dry		
		climate	10.50	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	climate	0.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44			Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	
116:								
Clear Lake clay, calcareous, occasionally flooded------	90							
		\| Severe		Moderate		Moderate		
		Flooding \geq rare	11.00	Surface clay >40\% and dry		Occasional flooding	0.50	
		Surface clay $>40 \%$ and dry		climate	10.50	Surface clay $>40 \%$ and dry		
		climate	10.50	Permeability of .06-.6"/hr	10.44	climate	0.50	
		Permeability of .06-.6"/hr	10.44		10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	
117:								
Clear Lake clay, calcareous,								
frequently flooded--------	90	\| Severe		Moderate		\| Severe		
		Flooding \geq rare	11.00	Frequent flooding	10.50	\| Flooding > occasional	1.00	
		Surface clay >40\% and dry		Surface clay >40\% and dry		Surface clay >40\% and dry		
		climate	10.50	climate	10.50	climate	0.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	
118:								
Clear Lake clay, frequently								
flooded------------------	90			Moderate		\| Severe		
		\| Flooding \geq rare	11.00	Frequent flooding	10.50	\| Flooding > occasional	11.00	
		Surface clay $>40 \%$ and dry		Surface clay $>40 \%$ and dry		Surface clay $>40 \%$ and dry		
		climate	10.50	climate	10.50	climate	0.50	
		Permeability of .06-.6"/hr	10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	
124 :								
Moonbend silt loam, occasionally								
flooded	80	\| Severe		\| Moderate		\| Moderate		
		Flooding \geq rare	11.00	Dusty	10.50	Occasional flooding	10.50	
		Dusty	10.50			Dusty	10.50	
125:								
Moonbend silt loam-	80	\| Severe		Moderate		\| Moderate		
		Flooding \geq rare	11.00	Dusty	10.50	Dusty	10.50	
		Dusty	10.50					

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds	
	-	Limitation		Limitation	\|Value ${ }^{\text {\| }}$	Limitation	${ }^{\text {\| Value }}$
			1				
136:							
Colusa loam-	85			\| Severe		\| Severe	
		Flooding \geq rare	\| 1.00	Surface SAR >13	11.00	Surface SAR >13	1.00
		SAR >12	11.00	Surface EC >8 mmhos/cm	11.00	Surface EC $>8 \mathrm{mmhos} / \mathrm{cm}$	11.00
		Surface EC $>8 \mathrm{mmhos} / \mathrm{cm}$	1.00	Dusty	10.50	Dusty	10.50
141:							
Myers clay	90	\| Severe		\| Moderate		\| Moderate	
		Flooding \geq rare	11.00	Surface clay >40\% and dry			
		Surface clay >40\% and dry		climate	10.50	climate	0.50
		climate	10.50	Permeability of .06-.6"/hr	10.46	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.46
		\| Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.46				
144:							
Hillgate clay loa	85	\|Slight	\|	\|Slight		\|Slight	
			1 \|				
$145:$							
Hillgate loam	90						
		\| Dusty	10.50	\| Dusty	0.50	Dusty	0.50
147:							
Hillgate loa	90						
		\| Dusty	10.50	Dusty	0.50	Dusty	0.50
						Slopes 2 to 6\%	0.26
150:							
Arbuckle sandy loam-	85	\|Slight	1	\|slight			
						Slopes 2 to 6\%	10.26
			$1 \quad 1$				
151:							
Arbuckle sandy loam	50	\|Slight		\|slight			
						\| Slopes 2 to 6\%	0.26
			1 \|				
Hillgate loam-	40						
		\| Dusty	10.50	Dusty	0.50	Dusty	10.50
						Slopes 2 to 6\%	10.26
$152:$							
Arbuckle gravelly loam-	85			\| Moderate		\| Severe	
		\| Dusty	10.50	Dusty	10.50	Surface rock fragments	
						$\left(>3^{\prime \prime}\right)>25 \%$	11.00
			1			Dusty	10.50
			1			Slopes 2 to 6\%	0.26
			\|				

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds		
		Limitation	\| Value	Limitation	\|Value		Limitation	Value
					\|			
185:								
Riverwash	95	\| Severe		\| Severe		Severe		
		Flooding \geq rare	1.00	Wetness <12" depth	11.00	Flooding > occasional	11.00	
		Wetness <18" depth	11.00	Very dusty	\| 1.00	Wetness <18" depth	11.00	
		very dusty	1.00	Frequent flooding	10.50	very dusty	1.00	
187:								
Westfan loam, occasionally								
flooded------------------------ \|	85	\| Severe		Moderate		Moderate		
		Flooding \geq rare	1.00	Dusty	10.50	Occasional flooding	10.50	
		SAR >12	1.00			Dusty	10.50	
		Dusty	0.50					
188:								
Westfan loam, clay substratum----\|	80			\| Moderate				
		Flooding \geq rare	1.00	Dusty	10.50	Dusty	10.50	
		Dusty	10.50	Permeability of .06-.6"/hr	10.10	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.10	
189:								
Arand very gravelly sandy loam----\|	85	\| Severe		Moderate		Severe		
		Flooding \geq rare	1.00	Rock fragments (<3") 25-50\%\|	10.08	Surface rock fragments		
		Rock fragments (<3") 25-50\%\|	10.08			(<3") >25\%	1.00	
190:								
Arand very gravelly loam---------\|	85	\| Severe		\| Severe		Severe		
		Flooding \geq rare	1.00	Rock fragments (<3") >50\%	11.00	Surface rock fragments		
		Rock fragments (<3") >50\%	1.00	Dusty	10.50	(<3") >25\%	1.00	
		Dusty	0.50			Dusty	0.50	
193:								
Westfan gravelly loam------------\|	80			\| Moderate		Severe		
		Flooding \geq rare	1.00	Dusty	10.50	Surface rock fragments		
		Dusty	10.50	Rock fragments (<3") 25-50\%\|	10.08	(<3") >25\%	1.00	
		Rock fragments (<3") 25-50\%\|	0.08			Dusty	10.50	
200:								
Clear Lake clay, occasionally								
flooded------------------------\|	90	\| Severe		\|Moderate				
		\| Flooding \geq rare	1.00	Surface clay $>40 \%$ and dry		Occasional flooding	0.50	
		Surface clay $>40 \%$ and dry		climate	10.50	Surface clay $>40 \%$ and dry		
		climate	0.50	Permeability of . 06 to		climate	0.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	. $61 / \mathrm{hr}$	10.44	Permeability of . 06 to		
						. $61 / \mathrm{hr}$	0.44	

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds		
		Limitation	\|Value		Limitation	\|Value	Limitation	\|Value
	1							
	1							
257:								
Capay clay	35	Severe		\| Moderate		\| Moderate		
		Flooding \geq rare	11.00	Surface clay $>40 \%$ and dry		Slopes 2 to 6\%	10.98	
		Surface clay and dry		climate	10.50	Surface clay >40\% and dry		
		climate	10.50	Permeability of . 06 to		climate	10.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.50	. $61 / \mathrm{hr}$	10.50	Permeability of .06 to		
						. $61 / \mathrm{hr}$	0.50	
261:								
Millsholm loam---------	60	Severe		\| Severe		\| Severe		
		\| Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >6\%	11.00	
		Bedrock depth <20"	11.00	\| Bedrock depth <20"	\| 1.00	Bedrock depth <20"	11.00	
		Dusty	10.50	Dusty	10.50	Dusty	10.50	
Altamont silty clay-----	25	Severe		\| Severe		Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		Surface clay $>40 \%$ and dry		Surface clay >40\% and dry		Surface clay >40\% and dry		
		climate	10.50	climate	10.50	climate	10.50	
		Permeability of .06-.6"/hr	10.44	Permeability of . 06 to				
				$\text { . } 6 \text { "/hr }$	10.44	$\text { . } 6 \text { " /hr }$	10.44	
270:							\|	
Balcom silt loam-------	55			Severe		Severe		
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >6\%	11.00	
		Dusty	10.50	Dusty	10.50	Dusty	10.50	
						Surface rock fragments		
						(>3") 10-25\%	10.06	
Ayar clay--------------	30	Severe		\| Severe		\| Severe		
			11.00	Slopes >15\%	11.00	Slopes >6\%	1.00	
		Surface clay $>40 \%$ and dry climate	10.50	Surface clay $>40 \%$ and dry climate	10.50	Surface clay $>40 \%$ and dry climate	10.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	Permeability of .06 to		Permeability of .06 to		
				.6"/hr	10.44	$.6 " / \mathrm{hr}$	10.44	
271:							\|	
Balcom silt loam-------	55	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >6\%	11.00	
		Dusty	10.50	Dusty	10.50	Dusty	10.50	
						Surface rock fragments		
						(<3") 10-25\%	10.06	

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds		
		Limitation	\| Value	Limitation	\|Value	Limitation	\| Value	
371:								
Buttes gravelly sandy loam-------\|	50	\| Severe		Severe		Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		Rock fragments (<3") 25-50\%\|	0.50	Rock fragments (<3") 25-50\%\|	0.50	Surface rock fragments		
						(<3") >25\%	11.00	
Millsholm loam	35	\| Severe		Severe		Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		\| Bedrock depth <20"	11.00	Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	
		Dusty	10.50	Dusty	10.50	Dusty	10.50	
519 :								
Stonyford gravelly loam---------- \|	50	\| Severe		Severe		\| Severe		
		Bedrock depth <20"	11.00	Bedrock depth <20"	11.00	Surface rock fragments		
		Dusty	10.50	Dusty	10.50	(<3") >25\%	11.00	
		Rock fragments (<3") 25-50\%\|	\| 0.36	Rock fragments (<3") 25-50\%\|0		10.36	Slopes >6\%	
						Bedrock depth <20"		
Guenoc loam---------------------\|	30	\|Moderate		Moderate		\| Severe		
		Dusty	10.50		10.50	Slopes >6\%	11.00	
		Permeability of .06-.6"/hr	10.44	Permeability of .06 to		Dusty	10.50	
		Slopes 8 to 15%	10.16	$.6 \mathrm{l} / \mathrm{hr}$	10.44	Bedrock at 20-40" and slope		
				Slopes 8 to 15\%	10.16	>2\%	0.50	
520 :								
Stonyford gravelly loam----------\|	65	\| Severe		Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00		\| 1.00	
		Bedrock depth <20"	11.00	Bedrock depth <20"	1.00	Surface rock fragments		
		Dusty	10.50	Dusty	0.50	(<3") >25\%	11.00	
						Bedrock depth <20"	11.00	
Guenoc loam-	15			Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	1.00	
		Dusty	10.50	Dusty	10.50	Dusty	0.50	
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.44	Permeability of . 06 to				
				$.6 \mathrm{l} / \mathrm{hr}$	10.44	$>2 \%$	0.50	
521:								
Stonyford gravelly loam-----------\|	\| 65			Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	1.00	
		Bedrock depth <20"	11.00	Bedrock depth <20"	11.00	Surface rock fragments		
		Dusty	10.50	Dusty	10.50	(<3 "1) >25\%	1.00	
						Bedrock depth <20"	11.00	

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds	
		Limitation	\|Value	Limitation	\| Value	Limitation	Value
			Value		\|Value		
527:							
Etsel gravelly sandy loam--------\|	30	Severe		Severe		\| Severe	
		Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	1.00
		Bedrock depth <20"	1.00	Bedrock depth <20"	1.00	Bedrock depth <20"	1.00
		Rock fragments (<3") 25-50\%\|	0.41	Rock fragments (<3") 25-50\%\|	10.41		
						(<3") >25\%	1.00
Speaker gravelly loam-----------	20	\| Severe		Severe		Severe	
		Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	1.00
528 :							
Maymen sandy loam	35			Severe		Severe	
		\| Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	1.00
		Bedrock depth <20"	1.00	Bedrock depth <20"	11.00		1.00
						Surface rock fragments	
						(<3") 10-25\%	0.18
Etsel gravelly sandy loam--------\|	25	\| Severe		Severe		Severe	
		Slopes >15\%		Slopes >15\%	11.00	Slopes >6\%	1.00
		Bedrock depth <20"		Bedrock depth <20"		Bedrock depth <20"	1.00
		Rock fragments (<3") 25-50\%\|	0.41	Rock fragments (<3") 25-50\%\|	10.41	Surface rock fragments (<3") >25\%	
							1.00
				Severe			
Snook gravelly sandy loam-------\|	25	\|Severe				Severe	
		Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	1.00
		Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	Bedrock depth <20"	11.00
		Rock fragments (<3") 25-50\%\|	0.32	Rock fragments (<3") 25-50\%\|	\| 0.32	Surface rock fragments	
						(<3") >25\%	1.00
529 :							
Maymen sandy loam	35	\| Severe		Severe		Severe	
		Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	11.00
		Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	Bedrock depth <20"	1.00
						Surface rock fragments	
						(<3") 10-25\%	0.18
Etsel gravelly sandy loam--------\|	30	\|Severe		Severe		Severe	
		Slopes >15\%	1.00	Slopes >15\%	11.00	Slopes >6\%	11.00
		Bedrock depth <20"	1.00	Bedrock depth <20"	1.00	Bedrock depth <20"	1.00
		Rock fragments (<3") 25-50\%\|	0.41	Rock fragments (<3") 25-50\%\|	10.41		
						(<3") >25\%	11.00

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds		
		Limitation	\| Value ${ }^{\text {a }}$	Limitation	\| Value	Limitation	\| Value	
529 :								
Mayacama gravelly coarse sandy				\| Severe		\| Severe		
loam-------------------------	20	\|Severe						
		Slopes >15\%	11.00	\| Slopes >15\%	1.00	\| Slopes >6\%	11.00	
		Rock fragments (<3") 25-50\%\|0.	10.68	Rock fragments (<3") 25-50\%\|	0.68	Surface rock fragments		
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$ \|	10.10	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.10	(<3") >25\%	11.00	
						Bedrock at 20-40" and slope		
				\| .			>2\% \|	10.50
542 :								
Okiota loam	35	\| Severe		\| Severe		Severe		
		Slopes >15\%	\| 1.00	Slopes >15\%	1.00	Slopes $>6 \%$	11.00	
		Bedrock depth <20"	11.00	Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	
		Dusty	10.50	Dusty	10.50	Dusty	10.50	
Dubakella gravelly clay loam--	25	\| Severe		\|Severe ${ }^{\text {Slopes }>15 \%}$		Severe		
		Slopes >15\%	1.00			Slopes $>6 \%$	11.00	
		Rock fragments (<3") >50\%	\| 1.00	Rock fragments (<3") >50\%	1.00	Surface rock fragments		
		Permeability of .06-.6"/hr	10.44	Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	0.44	(<3") >25\%	1.00	
						Bedrock at 20-40" and slope		
						$>2 \%$	0.50	
Henneke sandy loam	25	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		Bedrock depth <20"	11.00	Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	
		Permeability of .06-.6"/hr	10.44	Permeability of . 06 to		Permeability of .06 to		
				. $61 / \mathrm{hr}$	10.44	$\text { . } 6 \text { " /hr }$	10.44	
545 :								
Henneke sandy loam	40	\| Severe		Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		Bedrock depth <20"	\| 1.00	Bedrock depth <20"	1.00	Bedrock depth <20"	11.00	
		Permeability of .06-.6"/hr	10.44	Permeability of .06 to		Permeability of .06 to		
				$\text { . } 6 \mathrm{l} / \mathrm{hr}$	10.44	$.6 " / \mathrm{hr}$	10.44	
Montara gravelly sandy loam---	30	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	\| 1.00	Slopes >15\%	1.00	Slopes >6\%	11.00	
		Bedrock depth <20"	11.00	Bedrock depth <20"	1.00	Surface rock fragments		
		Rock fragments (<3") 25-50\%\|	\| 0.32	Rock fragments (<3") 25-50\%\|	10.32	(<3') > 25%	11.00	
						Bedrock depth <20"	11.00	
Rock outcrop		\| Not rated		\| Not rated		\| Not rated		
						,		

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Table 12.--Recreational Development (Part 1)--Continued

Map symbol and soil name	Pct.	\| Camp areas		Picnic areas		Playgrounds			
		Limitation	\| Value		Limitation	\|Value		Limitation	\| Value
		I							
650:									
Marpa very gravelly sandy loam---\|	30	\| Severe		Severe		Severe			
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >6\%	1.00		
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.10	Permeability of . 06 to		Bedrock at 20-40" and slope			
				. 6 "/hr	10.10	$>2 \%$	10.50		
		\|				Permeability of . 06 to			
						. 6 "/hr	10.10		
651:									
Bamtush very gravelly loam-------\|	55			Severe		Severe			
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >6\%	1.00		
Marpa very gravelly sandy loam---\|	30	\| Severe		Severe		Severe			
		Slopes >15\%	\| 1.00	Slopes >15\%	11.00	Slopes >6\%	1.00		
		Permeability of $.06-.6 \mathrm{~h} / \mathrm{hr}$	10.10	Permeability of . 06 to		Bedrock at 20-40" and slope			
				. $61 / \mathrm{hr}$	10.10	>2\%	10.50		
						Permeability of . 06 to			
						. $61 / \mathrm{hr}$	10.10		

The interpretation for camp areas evaluates the following soil properties at varying depths in the soil: flooding; ponding; wetness; slope; depth to bedrock; depth to a cemented pan; rock fragments less than, equal to, or more than 3 inches in size; sodium content (SAR); salinity (EC); a clayey surface layer; Unified classes for a high content of organic matter (PT, OL, and OH); soil dustiness; and permeability that is too rapid, allowing seepage in some climates.

The interpretation for picnic areas evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, depth to bedrock, depth to a cemented pan, salinity (EC), pH, soil dustiness, rock fragments more than 3 inches in size, surface rock fragments more than 10 inches in size, the amount of sand or clay in the surface layer, Unified classes for a high content of organic matter (PT, OL, and OH), and permeability that is too rapid, allowing seepage in some climates.

The interpretation for playgrounds evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, depth to bedrock, depth to a cemented pan, surface rock fragments more than 10 inches in size, rock fragments equal to or less than 3 inches in size, Unified classes for a high content of organic matter (PT, OL, and OH), soil dustiness, sand or clay content in the surface layer, pH, salinity (EC), and permeability that is too rapid, allowing seepage in some climates.
(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limiations is given at the end of the table.)

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Map symbol and soil name	Pct.	Paths and trails		Off-road motorcycle trails		\|Lawns, landscaping, and golf fairways	
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value
		\|					
160:							
Grandbend loam	80	\| Moderate		Moderate		\|slight	
		Dusty	10.50	Dusty	10.50		
170:							
Vina loam, frequently flooded----\|	80	\| Moderate		Moderate		\| Moderate	
		\| Frequent flooding	10.50	Frequent flooding	10.50	Frequent flooding	0.90
		\| Dusty	10.50	Dusty	10.50		
171:							
Vina loam	85	\| Moderate		Moderate		\|Slight	
		Dusty	10.50	Dusty	10.50		
172:							
Vina fine sandy loam, frequently flooded-			\|				
	80			Moderate			
		\| Frequent flooding	10.50	Frequent flooding	10.50	\| Frequent flooding	10.90
174:							
Vina loam, occasionally flooded--	85	\| Moderate		Moderate		Moderate	
		Dusty	10.50	Dusty	10.50	\| Occasional flooding	10.80
175:							
Tujunga loam, overwash, frequently flooded----			\|				
	85	\|Moderate		Moderate		Moderate	
		Frequent flooding	10.50	Frequent flooding	10.50	Frequent flooding	10.90
		Dusty	10.50	Dusty	10.50	AWC 2-4" to 40"	10.38
176:							
Columbia fine sandy loam, frequently flooded------							
	80	\| Moderate		Moderate		\| Moderate	
		Frequent flooding	10.50	Frequent flooding	10.50	Frequent flooding	0.90
177:							
Holillipah loamy sand, channeled--\|	80			Moderate		\| Moderate	
		\| Frequent flooding	10.50	Frequent flooding	10.50	Frequent flooding	10.90
						AWC 2-4" to 40"	10.74
185:			\|				
Riverwash--------------------1)	95	\| Severe		Severe		\| Severe	
		Wetness <12" depth	\| 1.00	Wetness <12" depth	1.00	Wetness <12" depth	11.00
		Very dusty	11.00	Very dusty	11.00	Frequent flooding	10.90
		Frequent flooding	10.50	Frequent flooding	10.50	AWC 2-4" to 40"	10.24

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

Table 13.--Recreational Development (Part 2)--Continued

The interpretation for paths and trails evaluates the following soil properties at varying depths in the soil: flooding; ponding; wetness; slope; rock fragments less than, equal to, or more than 3 inches in size; sand or clay content in the surface layer; surface rock fragments more than or equal to 10 inches in size; Unified classes for a high content of organic matter (PT, OL, and OH); soil dustiness; and the hazard of water erosion.

The interpretation for off-road motorcycle trails evaluates the following soil properties at varying depths in the soil: flooding; ponding; wetness; slope; soil dustiness; rock fragments less than, equal to, or more than 3 inches in size; sand or clay content in the surface layer; and Unified classes for a high content of organic matter (PT, OL, and OH).

The interpretation for lawns, landscaping, and golf fairways evaluates the following soil properties at varying depths in the soil: flooding; ponding; wetness; slope; depth to bedrock; depth to a cemented pan; rock fragments more than, equal to, or less than 3 inches in size; Unified classes for a high content of organic matter (PT , OL , and OH) ; soil dustiness; sand or clay content in the surface layer; surface rock fragments more than or equal to 10 inches in size; soil pH ; salinity (EC); sodium content (SAR); calcium carbonates; and sulfur content.

|Table 14.--Building Site Development (Part 1)

(The information in this table is based on Pacific Southwest MLRA office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Limitation	\| Value	Limitation	\|Value	Limitation	\| Value
		\|					
$\begin{array}{r} \text { 100, 101, 102, 103: } \\ \text { Capay----------- } \end{array}$							
	90	\| Severe		Severe		\| Severe	
		Flooding \geq rare	11.00	Flooding \geq rare	\| 1.00	Flooding \geq rare	11.00
		Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00
		-		Wetness from 2.5' to 6'			
			\|	depth	10.61		
			\|				
104, 105, 106:Willows silty clay							
	90	\|Severe		Severe		\| Severe	
		Flooding \geq rare	11.00	Flooding \geq rare	11.00	Flooding \geq rare	11.00
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00
				Wetness from 2.5' to 6'	10.61		
				depth			
		\|	\|				
107, 108, 109:Scribner silt loa					\|		
	80			Severe			
		\| Flooding \geq rare	11.00	Flooding \geq rare	11.00	Flooding \geq rare	\| 1.00
		Wetness <18" depth	11.00	Wetness <2.5' depth	11.00	Wetness <18" depth	11.00
110:							
Hustabel sandy loam	80						
		Flooding \geq rare	11.00	Flooding \geq rare	11.00	Flooding \geq rare	11.00
				Wetness from 2.5' to 6'			
				depth	10.95		
112:			\|		\|		
Westfan loam	80	\| Severe	\|	Severe		\| Severe	
		\| Flooding \geq rare	1.00	Flooding \geq rare	1.00	Flooding \geq rare	
		\| Shrink-swell (LEP 3-6)	10.68			Shrink-swell (LEP 3-6)	10.68
					\|		
113:Westfan loam, sod			\|				
	85			Severe		\|Severe	
		$\text { Flooding } \geq \text { rare }$	1.00	Flooding \geq rare	11.00	Flooding \geq rare	11.00
		Shrink-swell (LEP 3-6)	10.68			Shrink-swell (LEP 3-6)	10.68
114:			\|				
Westfan clay loam	80	\| Severe		\| Severe		\|Severe	
		Flooding \geq rare	\| 1.00	Flooding \geq rare	11.00	Flooding \geq rare	\| 1.00
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50

Table 14.--Building Site Development (Part 1)--Continued

Table 14.--Building Site Development (Part 1)--Continued

Map symbol and soil name	\| Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings			
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value		
		1							
			\| 1		\|				
215:									
Altamont silty clay-----	45	\|Severe ${ }^{\text {S }}$ Slopes >15\%		Severe		\| Severe			
			11.00	\| Slopes >15\%	11.00	Slopes >8\%			
		Shrink-swell (LEP >6)	1.00	Shrink-swell (LEP >6)	$\text { \| } 1.00$	Shrink-swell (LEP >6)	$\text { \| } 1.00$		
				Severe					
Sehorn silty clay	35	\|Severe				Severe			
		Slopes >15\%	\| 1.00	Slopes >15\%	11.00	Slopes >8\%	1.00		
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	\| 1.00		
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	1.00	Bedrock (hard) from 20 to			
		40"	10.42			40"	0.42		
216:									
Altamont silty clay----	45	Severe		Severe		Severe			
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Slopes >8\%	\| 1.00		
		Slopes 8 to 15\%	10.63	Slopes 8 to 15\%	10.63	Shrink-swell (LEP >6)	\| 1.00		
Sehorn silty clay------	35	\| Severe		Severe		Severe			
		\| Shrink-swell (LEP >6)	11.00	\| Shrink-swell (LEP >6)	11.00	Slopes >8\%	11.00		
		Slopes 8 to 15%	10.63	Bedrock (hard) <40" depth	1.00		\| 1.00		
		Bedrock (hard) from 20 to		Slopes 8 to 15\%	10.63	Bedrock (hard) from 20 to			
		$40 "$	10.42			$40 "$	0.42		
218: \|			1	Severe					
Sehorn silty clay	45	$\begin{aligned} & \text { \| Severe } \\ & \mid \quad \text { Slopes }>15 \% \end{aligned}$				Severe			
			\| 1.00	\| Severe ${ }^{\text {S }}$ Slopes > 15%	11.00	Slopes >8\%	\| 1.00		
		Shrink-swell (LEP >6) Bedrock (hard) from 20 to	11.00	Shrink-swell (LEP >6) Bedrock (hard) <40" depth	1.00		\|1.00		
					1.00	Bedrock (hard) from 20 to			
		40%	10.42			40"	10.42		
Altamont silty clay----	35	Severe Slopes >15\%		\| Severe		Severe			
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >8\%	11.00		
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00		
220: \|									
Altamont silty clay	85	Severe				\| Severe			
	85	\| Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	\| 1.00		Shrink-swell (LEP >6)	\| 1.00	
						Slopes from 4\% to 8\%	10.86		
221: \|					1		,		
Altamont silty clay----	85	\| Severe		Severe		Severe			
		Shrink-swell (LEP >6)	11.00	\| Shrink-swell (LEP >6)	11.00	Slopes >8\%	11.00		
		Slopes 8 to 15\%	10.63	Slopes 8 to 15\%	10.63	Shrink-swell (LEP >6)	11.00		
230:			1						
Corning clay loam------	90	\mid Severe ${ }^{\text {\| }}$ Shrink-swell (LEP >6)		\| Severe		Severe			
			11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00		

Table 14.--Building Site Development (Part 1)--Continued

Table 14.--Building Site Development (Part 1)--Continued

Map symbol and soil name	\| Pct. ${ }^{\text {P }}$	Dwellings without basements		Dwellings with basements		Small commercial buildings		
		Limitation	\| Value	Limitation	\|Value	Limitation	\| Value	
			1		\|			
275:								
Balcom silt loam----------------\|	15	\| Severe	1 \|	\| Severe	\|		Severe	
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00	
				Bedrock (soft) from 20 to				
			\|	401	10.20			
			\|					
276:								
Positas gravelly sandy loam------\|	90	\| Severe		\| Severe		Severe		
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	1.00	
280:								
Skyhigh gravelly clay loam--------\|	45	\| Severe	1 \|	\| Severe	1 \|	Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	1.00	Bedrock (hard) from 20 to		
		401	10.46			40 "	0.46	
Millsholm loam-------------------	30			\| Severe		Severe		
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >8\%	1.00	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00	
300:								
Contra Costa loam-----------------	55			\| Severe		Severe		
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	1.00	Shrink-swell (LEP >6)	1.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		$40 "$	10.42			$40 "$	0.42	
Millsholm loam------------------	45	\| Severe		\| Severe		Severe		
		Slopes $>15 \%$	11.00	Slopes >15\%	11.00	Slopes >8\%	1.00	
		Bedrock (hard) <20" depth	\| 1.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00	
305:								
Contra Costa loam----------------\|	85			\| Severe		Severe		
		Slopes >15\%	11.00	\| Slopes >15\%	11.00	Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	1.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	\| 1.00	Bedrock (hard) from 20 to		
		$40 "$	10.42			$40 "$	0.42	
311:								
Contra Costa loam----------------\|	85	\|Severe		\|Severe		Severe		
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Slopes >8\%	1.00	
		Slopes 8 to 15\%	10.63	Bedrock (hard) <40" depth	11.00	Shrink-swell (LEP >6)	\| 1.00	
		Bedrock (hard) from 20 to		Slopes 8 to 15%	10.63	Bedrock (hard) from 20 to		
		$40 "$	10.42			$40 "$	0.42	

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings			
		Limitation	\| Value		Limitation	\| Value		Limitation	\|Value
312:									
Saltcanyon loam	90	\| Severe		\|Severe		\|Severe			
		Flooding \geq rare	11.00	Flooding \geq rare	11.00	Flooding \geq rare	11.00		
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50		
313:									
Saltcanyon loam-	90	\| Severe		\| Severe		Severe			
		Flooding \geq rare	\| 1.00	Flooding \geq rare	11.00	Flooding \geq rare	\| 1.00		
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Slopes from 4% to 8%	10.86		
				Shrink (Shrink-swell (LEP 3-6)	10.50		
315:									
Mallard clay loa	90			\| Moderate		Severe			
		\| Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP >6)	1.00		
316:									
Hillgate loam	90	\|slight	$\|\quad\|$	\|slight		Moderate			
						Slopes from 4\% to 8\%	0.86		
320:									
Millsholm loam	85	\| Severe	1 \|	Severe		Severe			
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	11.00		
		Slopes >15\%	11.00	Slopes $>15 \%$	11.00	Slopes >8\%	11.00		
329:									
Sehorn silty clay	40	\| Severe		Severe		Severe			
		Slopes >15\%		Slopes >15\%		Slopes >8\%			
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	1.00		
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	1.00	Bedrock (hard) from 20 to	\|		
		$40 "$	10.42			$40 \text { " }$	0.42		
Millsholm loam-	30			\| Severe					
		\| Slopes >15\%	\| 1.00	\| Slopes >15\%	\| 1.00	Slopes >8\%	11.00		
		Bedrock (hard) <20" depth	1.00	Bedrock (hard) <40" depth	1.00	Bedrock (hard) <20" depth	11.00		
Altamont silty clay-----	15	Severe		\| Severe		Severe			
		Slopes >15\%	\| 1.00	Slopes >15\%	11.00	Slopes >8\%	11.00		
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00		
330 :									
Millsholm loam-	60	\| Severe		\| Severe		Severe			
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00		
		Bedrock (hard) <20" depth	1.00	Bedrock (hard) <40" depth	1.00	Bedrock (hard) <20" depth	11.00		
				-					

Table 14.--Building Site Development (Part 1)--Continued

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings		
		Limitation	\| Value		Limitation	\|Value ${ }^{\text {\| }}$	Limitation	\| Value
			1		\|			
330:								
Contra Costa loam------	25	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		$40^{\prime \prime}$	10.42			$40 \text { " }$	0.42	
331:								
Sehorn silty clay------	35	\| Severe		\| Severe		\|Severe		
		\| Slopes >15\%	11.00	\| Slopes >15\%	11.00	\| Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	1.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		$40 "$	10.42			$40 "$	0.42	
Millsholm loam-	30	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	\| 1.00	\| Slopes >15\%	11.00	Slopes >8\%		
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	$\text { \| } 1.00$	
Rock outcrop-----------332 :	20	\| Not rated		Not rated		Not rated		
			1					
Millsholm loam	50	\| Severe ${ }^{\text {S }}$ Slopes $>15 \%$		Severe		Severe		
			11.00	\| Slopes >15\%	11.00	\| Slopes >8\%	1.00	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	\| 1.00	Bedrock (hard) <20" depth	1.00	
Rock outcrop-----------334 :	40	Not rated		Not rated		Not rated		
					\mid \|			
	334:							
Millsholm loam-	70	Severe Slopes >15\%		\| Severe ${ }^{\text {Slopes }>15 \%}$		Severe		
			11.00		11.00	\| Slopes >8\%	11.00	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	\| 1.00	
Contra Costa loam------	15	\|Severe\| Slopes $>15 \%$		Severe		Severe		
			\| 1.00	Slopes >15\%	11.00	Slopes >8\%		
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		40"	10.42			40"	0.42	
337 :								
Millsholm loam-	50	\| Severe		\| Severe		\| Severe		
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth		
		Slopes 8 to 15\%	10.16	Slopes 8 to 15%	10.16	Slopes >8\%	11.00	
Saltcanyon loam-	35	$\begin{aligned} & \text { \| Moderate } \\ & \text { Shrink-swell (LEP 3-6) } \\ & \text { Slopes } 8 \text { to } 15 \% \end{aligned}$		\| Moderate		Severe		
			10.50	Shrink-swell (LEP 3-6)	10.50	Slopes >8\%	11.00	
			10.04	Slopes 8 to 15%	10.04	Shrink-swell (LEP 3-6)	10.50	

Map symbol and soil name	\|Pct. ${ }^{\text {\| }}$	Dwellings withoutbasements		Dwellings with basements		Small commercial buildings		
		Limitation	\| Value	Limitation	\|Value		Limitation	\| Value
			1					
345:								
Skyhigh gravelly clay loam-------\|	40	Severe	\|	\| Severe		Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	1.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		401	10.46			401	10.46	
Sleeper clay loam-	30	Severe				Severe		
		\| Slopes >15\%	\| 1.00	\| Slopes >15\%	11.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	1.00	
				Bedrock (hard) from 40 to				
			\|	60 "	10.42			
			\|					
Millsholm loam-------------------	15	\| Severe		Severe		Severe		
		Slopes >15\%		Slopes >15\%	11.00	Slopes >8\%		
		Bedrock (hard) <20" depth	1.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	$\text { \| } 1.00$	
346:			1					
Skyhigh gravelly clay loam--------	45	\| Severe ${ }^{\text {S }}$ Slopes >15\%		\| Severe		Severe		
			11.00	Slopes >15\%	\| 1.00	Slopes >8\%	1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LeP >6)	\| 1.00	Shrink-swell (LEP >6)	\| 1.00	
		```Bedrock (hard) from 20 to```		Bedrock (hard) <40" depth	\| 1.00	Bedrock (hard) from 20 to		
			10.46			$40 "$	10.46	
Millsholm loam------------------\|	20	Severe		\| Severe		Severe		
		Slopes >15\%	\| 1.00	Slopes $>15 \%$	\| 1.00	Slopes >8\%	1.00	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00	
Sleeper clay loam-	20	Severe		\| Severe		Severe		
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
				Bedrock (hard) from 40 to				
				$60 "$	10.42			
347:			1					
Boar loam----------------------- \|	45	\| Severe		Severe		Severe		
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	\| 1.00	
		Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	11.00	
Sleeper clay loam---------------\|	40	\| Severe		\| Severe		Severe		
		\| Slopes >15\%	\| 1.00	\| Slopes >15\%	11.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	11.00	\| Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
				Bedrock (hard) from 40 to				
			\|	$60 "$	10.42			

Table 14.--Building Site Development (Part 1)--Continued


Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Limitation	\| Value $\mid$	Limitation	\| Value	Limitation	\| Value
519 :							
Stonyford gravelly loam----------\|	50	\| Severe		\| Severe		\| Severe	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Slopes >8\%	1.00
		Slopes 8 to 15\%	10.16	Slopes 8 to 15\%	\| 0.16	Shrink-swell (LEP 3-6)	0.50
Guenoc loam----------------------\|	30	\| Moderate		\| Severe		\| Severe	
		Shrink-swell (LEP 3-6)	10.50	Bedrock (hard) <40" depth	\| 1.00	Slopes >8\%	1.00
		\| Bedrock (hard) from 20 to		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50
		$40 \text { " }$	10.46	Slopes 8 to $15 \%$	$0.16$	Bedrock (hard) from 20 to	
		Slopes 8 to 15\%	10.16			40"	0.46
520, 521:							
Stonyford gravelly loam-----------	65	\| Severe		\| Severe		\| Severe	
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	1.00
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	\| 1.00
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	$10.50$
Guenoc loam----------------------\|	15	\| Severe		\| Severe		\| Severe	
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	1.00
		\| Shrink-swell (LEP 3-6)	10.50	Bedrock (hard) <40" depth	11.00	Shrink-swell (LEP 3-6)	0.50
		\| Bedrock (hard) from 20 to		Shrink-swell (LEP 3-6)	10.50	Bedrock (hard) from 20 to	
		40"	10.46			40"	0.46
524:							
Arand, frequently flooded--------\|	65	\| Severe		\| Severe		\| Severe	
		Flooding $\geq$ rare	11.00	Flooding $\geq$ rare	11.00	Flooding $\geq$ rare	11.00
Riverwash	25	\| Severe		\| Severe		\| Severe	
		Flooding $\geq$ rare	\| 1.00	Flooding $\geq$ rare	11.00	Flooding $\geq$ rare	\|1.00
		Wetness <18" depth	\| 1.00	Wetness <2.5' depth	\| 1.00	Wetness <18" depth	11.00
526:							
Etsel gravelly sandy loa	30			\| Severe		\| Severe	
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	1.00
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00
Maymen sandy loam----------------\|	30	\| Severe		\| Severe		\| Severe	
		\| Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >8\%	
		\| Bedrock (hard) <20" depth	\| 1.00	Bedrock (hard) <40" depth	11.00	Bedrock (hard) <20" depth	1.00
Marpa very gravelly sandy loam----\|	20	\| Severe		\| Severe		\| Severe	
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	1.00
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	\| 1.00	Bedrock (hard) from 20 to	
		$40 "$	10.46			$40 "$	0.46

Table 14.--Building Site Development (Part 1)--Continued



Table 14.--Building Site Development (Part 1)--Continued

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings		
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value	
			\|			\|		
557:								
Bamtush very gravelly loam-------\|	30	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >8\%	11.00	
Speaker gravelly loam------------\|	20	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >8\%	11.00	
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	
				Bedrock (soft) from 20 to				
				$40 "$	0.46			
564:								
Fouts gravelly loa	35	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >8\%		
		Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	$1.00$	
		\| Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	1.00	Bedrock (hard) from 20 to		
		$40 "$	10.46			$40 "$	10.46	
					\|			
Yorkville clay loam--------------\|	35	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00	
		Shrink-swell (LEP >6)	\| 1.00	Shrink-swell (LEP >6)	11.00	Shrink-swell (LEP >6)	11.00	
Squawrock gravelly loam----------\|	15							
		\| Slopes >15\%	11.00	\| Slopes >15\%	\| 1.00	Slopes >8\%	1.00	
		\| Shrink-swell (LEP 3-6)	10.50	Bedrock (hard) <40" depth	\| 1.00	Shrink-swell (LEP 3-6)	10.50	
		Bedrock (hard) from 20 to		Shrink-swell (LEP 3-6)	10.50	Bedrock (hard) from 20 to		
		$401$	10.46			$40 \text { " }$	0.46	
570 :								
Endoaquolls, frequently ponded----	90							
		\| Ponding (any duration)	11.00	\| Ponding (any duration)	11.00	Ponding (any duration)	11.00	
		\| Wetness <18" depth	\| 1.00	Wetness <2.5' depth	\| 1.00	Wetness <18" depth	11.00	
		Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	Shrink-swell (LEP 3-6)	10.50	
590:								
Neuns very gravelly loam---------\|	35	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >8\%	11.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	\| 1.00	Bedrock (hard) from 20 to		
		40"	10.46			40"	0.46	
					\|			
Marpa very gravelly sandy loam----	30	\| Severe		\| Severe		\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >8\%	1.00	
		Bedrock (hard) from 20 to		Bedrock (hard) <40" depth	11.00	Bedrock (hard) from 20 to		
		40"	10.46			40"	0.46	



Table 14.--Building Site Development (Part 1)--Continued



The interpretation for dwellings without basements evaluates the following soil properties, some at varying depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), organic Unified classes for low soil strength (PT, OL, or OH), depth to hard or soft bedrock, depth to a thick or thin cemented pan, and rock fragments more than 3 inches in size.

The interpretation for dwellings with basements evaluates the following soil properties, some at varying depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), organic Unified classes for low strength (PT, OL, or OH), depth to hard or soft bedrock, depth to a thick or thin cemented pan, and rock fragments more than 3 inches in size.

The interpretation for small commercial buildings evaluates the following soil properties, some at varying depths in the soil: flooding, ponding wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), depth to hard or soft bedrock, depth to a thick or thin cemented pan, and rock fragments more than 3 inches in size.
(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)


Table 15.--Building Site Development (Part 2)--Continued


Table 15.--Building Site Development (Part 2)--Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations	
		Limitation	\| Value	Limitation	\| Value
		1			
		\|	\|		\|
213:					
Ayar clay--------------	\| 85			\| Severe	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	$1.00$
		Slopes >15\%	11.00	Caving potential	11.00
		Shrink-swell (LEP >6)	11.00	Clay from 40 to 60\%	10.12
215:					\|
Altamont silty clay	45	\| Severe	1 \|	\| Severe	\|
		\| AASHTO GI >8 (soil strength)		Slopes >15\%	\| 1.00
		\| Shrink-swell (LEP >6)	$1.00$	Caving potential	$1.00$
		Slopes >15\%	11.00	Clay from 40 to $60 \%$	10.83
			1 \|		\|
Sehorn silty clay	35		1 \|	Severe	
		AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Shrink-swell (LEP >6)	11.00	Caving potential	11.00
		Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
					1
216:			\|		\|
Altamont silty cla	45	\| Severe	1 \|	Severe	\|
		\| AASHTO GI >8 (soil strength)	11.00	Caving potential	11.00
		\| Shrink-swell (LEP >6)	11.00	Clay from 40 to 60\%	$10.83$
		Slopes 8 to 15\%	10.63	Slopes 8 to 15\%	10.63
			\|		,
Sehorn silty clay	35	\|Severe	1	Severe	
		AASHTO GI >8 (soil strength)	11.00	Caving potential	11.00
		\| Shrink-swell (LEP >6)	11.00	Bedrock (hard) <40" depth	11.00
		\| Slopes 8 to $15 \%$	10.63	Clay from 40 to 60\%	10.81
218 :			1 \|		\|
Sehorn silty clay	45				
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Shrink-swell (LEP >6)	11.00	Caving potential	11.00
		Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
Altamont silty clay	35	\| Severe		Severe	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Shrink-swell (LEP >6)	$1.00$	Caving potential	$1.00$
		\| Slopes >15\%	$1.00$	Clay from 40 to 60\%	10.83
220 :			\|		\|
Altamont silty clay	85				
		\| AASHTO GI >8 (soil strength)	11.00	Caving potential	11.00
		Shrink-swell (LEP >6)	11.00	Clay from 40 to $60 \%$	10.83
					,
221:			1		\|
Altamont silty clay	85	\| Severe	\|	Severe	\|
		\| AASHTO GI >8 (soil strength)	11.00	Caving potential	11.00
		\| Shrink-swell (LEP >6)	$11.00$	Clay from 40 to $60 \%$	$10.83$
		\| Slopes 8 to $15 \%$	$10.63$	Slopes 8 to 15\%	10.63
					\|
230:			\|		\|
Corning clay loam-	90		\|		
		\| Shrink-swell (LEP >6)	11.00	Caving potential	11.00
		\| AASHTO GI >8 (soil strength)	11.00	Clay from 40 to 60\%	10.50
					1
232:		\|	\|		1
Maywood gravelly loam,			\|		\|
	85	\| Severe		Moderate	1
		\| Flooding $\geq$ occasional	11.00	Very frequent flooding	$10.50$
			\|	Low caving potential	10.10

Table 15.--Building Site Development (Part 2)--Continued

Map symbol and soil name	$\mid \text { Pct. }$	Local roads and streets		Shallow excavations	
		Limitation	Value	Limitation	\|Value
	\|	\|			
233:					
Eastpark clay loa	95	Moderate		Severe	
	\|	Shrink-swell (LEP 3-6)	10.50	Caving potential	$1.00$
				Clay from 40 to $60 \%$	$\mid 0.12$
241:					
Contra Costa loam	55	\|Severe		Severe	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Slopes >15\%	11.00	Caving potential	11.00
		\| Shrink-swell (LEP >6)	\| 1.00	Bedrock (hard) <40" depth	11.00
Altamont silty clay----	\| 35	\| Severe	\|	Severe	
		\| AASHTO GI >8 (soil strength)	\| 1.00	Slopes >15\%	\| 1.00
		Shrink-swell (LEP >6)	\| 1.00	Caving potential	11.00
		Slopes >15\%	11.00	Clay from 40 to $60 \%$	10.83
253:					
Millsholm loam	55	\| Severe		Severe	
		\| Bedrock (hard) <20" depth	$\text { \| } 1.00$	Bedrock (hard) <40" depth	\| 1.00
		Slopes 8 to 15\%	$0.16$	Slopes 8 to 15\%	$\mid 0.16$
				Low caving potential	10.10
Altamont silty clay----	\| 20	\| Severe	1	Severe	
		AASHTO GI >8 (soil strength)	11.00	Caving potential	\| 1.00
		Shrink-swell (LEP >6)	11.00	Clay from 40 to 60\%	10.83
		Slopes 8 to 15\%	\| 0.16	Slopes 8 to $15 \%$	10.16
Rock outcrop------------	\| 15	\| Not rated		Not rated	
255:			1		
Millsholm loam-	55	\| Severe		Severe	
		Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	\| 1.00
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00
				Low caving potential	10.10
257:					
Millsholm loam-	50	\|Severe		Severe	
		\| Bedrock (hard) <20" depth	11.00	Bedrock (hard) <40" depth	11.00
				Low caving potential	10.10
			1		
Capay clay--------------	\| 35	\| Severe	1	Severe	
		AASHTO GI >8 (soil strength)	\| 1.00	Caving potential	\| 1.00
		Shrink-swell (LEP >6)	\| 1.00	Clay >60\%	\| 1.00
		Rare flooding	10.50	Wetness from 2.5' to 6' depth	10.61
261:			1		
Millsholm loam-	60	\| Severe	1	Severe	
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	\| 1.00
		Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00
	\|		\|	Low caving potential	10.10
			1		
Altamont silty clay----	\| 25	\| Severe	1	Severe	
		AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	\| 1.00
		Shrink-swell (LEP >6)	$1.00$	Caving potential	11.00
	\|	Slopes >15\%	11.00	Clay from 40 to $60 \%$	10.83
270, 271:			1		
Balcom silt loam	55	\| Severe	1	Severe	
		Slopes >15\%	11.00	Slopes >15\%	11.00
			\|	Bedrock (soft) from 20 to 40 "	10.20
			\|	Low caving potential	10.10

Table 15.--Building Site Development (Part 2)--Continued

Map symbol and soil name		Local roads and streets		Shallow excavations		
		Limitation	\|value	Limitation	\|Value	
		1				
		\|	1		1	
270, 271:						
Ayar clay------------------------\|	30	\| Severe		Severe	\|	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	1.00	
		\| Slopes >15\%	$1.00$	Caving potential	$\text { \| } 1.00$	
		Shrink-swell (LEP >6)	11.00	Clay from 40 to 60\%	0.12	
		\|	\|		\|	
275:	\|	\|	1		\|	
Goldeagle clay loa	45	\| Severe	1	Severe	\|	
		Slopes >15\%	\| 1.00	Slopes >15\%	1.00	
		\| Shrink-swell (LEP >6)	11.00	Low caving potential	0.10	
Positas gravelly sandy loam------\|	\| 25	\| Severe		Severe		
		\| AASHTO GI >8 (soil strength)	\| 1.00	Slopes >15\%	1.00	
		\| Slopes >15\%	11.00	Caving potential	1.00	
		\| Shrink-swell (LEP >6)	11.00	Clay from 40 to $60 \%$	0.50	
			\|			
Balcom silt loam----------------- \|	15	\|Severe		\| Severe		
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	
		\|	\|	Bedrock (soft) from 20 to 40"	10.20	
		\|	1	Low caving potential	10.10	
276:		\|	1		,	
Positas gravelly sandy loam------\|	90	\| Severe	\|	Severe	\|	
		\| AASHTO GI >8 (soil strength)	\| 1.00	- Slopes >15\%	11.00	
		\| Slopes >15\%	\| 1.00	Caving potential	11.00	
		\| Shrink-swell (LEP >6)	11.00	Clay from 40 to $60 \%$	10.50	
	1 \|	$\mid$				
280:		\|	1 \|		\|	
Skyhigh gravelly clay loam-------\|	45	\| Severe		\|Severe		
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00	
		\| Slopes >15\%	\| 1.00	Caving potential	11.00	
		\| Shrink-swell (LEP >6)	\| 1.00	Bedrock (hard) <40" depth	11.00	
Millsholm loam-------------------\|	30	\| Severe		Severe	\|	
		\| Slopes >15\%	11.00	- Bedrock (hard) <40" depth	1.00	
		\| Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00	
				Low caving potential	10.10	
		\|	1			
$300: 3$			1 \|		\|	
Contra Costa loam----------------\|	\| 55	\| Severe	\|	Severe	\|	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00	
		\| Slopes >15\%	\| 1.00	Caving potential	11.00	
		\| Shrink-swell (LEP >6)	11.00	Bedrock (hard) <40" depth	11.00	
Millsholm loam-------------------	\| 45	\| Severe	1	Severe	\|	
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00	
		Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00	
	1		1	Low caving potential	10.10	
		\|	1		,	
			1		\|	
Contra Costa loam----------------\|	\| 85	\| Severe	\|	Severe	\|	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	\| 1.00	
		\| Slopes >15\%	11.00	Caving potential	11.00	
		\| Shrink-swell (LEP >6)	11.00	Bedrock (hard) <40" depth	11.00	
		\|			\|	
311:		\|	1 \|		\|	
Contra Costa loam----------------	85					
		\| AASHTO GI >8 (soil strength)	11.00	Caving potential	11.00	
		\| Shrink-swell (LEP >6)	11.00	- Bedrock (hard) <40" depth	11.00	
		\| Slopes 8 to $15 \%$	10.63	\| Slopes 8 to 15\%	10.63	
		1	,		\|	

Table 15.--Building Site Development (Part 2)--Continued


Table 15.--Building Site Development (Part 2)--Continued


Table 15.--Building Site Development (Part 2)--Continued

Map symbol and soil name	\|Pct.	Local roads and streets		Shallow excavations	
		Limitation	\|Value	Limitation	\| Value
	\|				
			\|		
346:					
Sleeper clay loam	20			Severe	
		\| AASHTO GI >8 (soil strength)	$1.00$	Slopes >15\%	11.00
		\| Slopes >15\%	11.00	Bedrock (hard) from 40 to 60"	10.42
		\| Shrink-swell (LEP >6)	11.00	Low caving potential	10.10
				-	
347:			\|		
Boar loam	$45$	\|Severe	\|	Severe	\|
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Slopes >15\%	$1.00$	Low caving potential	$10.10$
		\| Shrink-swell (LEP >6)	11.00		
					\|
Sleeper clay loam	40			Severe	
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Slopes >15\%	11.00	Bedrock (hard) from 40 to 60"	10.42
		\| Shrink-swell (LEP >6)	1.00	Low caving potential	10.10
		( ${ }^{\text {a }}$	,	Low	
348:			\|		\|
Boar loam-	45	\| Severe	\|	Severe	
		\| AASHTO GI >8 (soil strength)	11.00	\| Slopes >15\%	11.00
		\| Slopes >15\%	11.00	Low caving potential	10.10
		\| Shrink-swell (LEP >6)	1.00		
					\|
Sleeper clay loam	40			Severe	\|
		\| AASHTO GI >8 (soil strength)	11.00	Slopes >15\%	11.00
		\| Slopes >15\%	11.00	Bedrock (hard) from 40 to 60"	10.42
		Shrink-swell (LEP >6)	11.00	Low caving potential	10.10
350:	1		\|		\|
Haploxererts	80 \|			Severe	
		\| AASHTO GI >8 (soil strength)	$1.00$	Slopes >15\%	11.00
		\| Slopes >15\%	\|1.00	Caving potential	\| 1.00
		\| Shrink-swell (LEP >6)	11.00	Clay from 40 to $60 \%$	10.12
355 :					
Venado clay-------------	80	\| Severe	1	Severe	
		\| AASHTO GI >8 (soil strength)	$1.00$	\| Caving potential	11.00
		\| Shrink-swell (LEP >6)	$\mid 1.00$	Wetness <2.5' depth	11.00
		\| Wetness from 12 to 301 depth	$10.19$	Clay >60\%	11.00
			1		\|
Bearvalley gravelly sandy	85	\|Slight	1	Severe	\|
			\|	Caving potential	11.00
			1		,
			1		
Leesville clay loam	85	\|Slight	1	Severe	1
			\|	Caving potential	11.00
			1		,
370:		\|	1		1
Livermore very gravelly	90	\| Moderate	1	Severe	1
		\| Shrink-swell (LEP 3-6)	10.50	\| Caving potential	11.00
			\|		\|
371:					\|
Buttes gravelly sandy loa	50	\| Severe	\|	Severe	1
		\| Slopes >15\%	11.00	Slopes >15\%	$1.00$
		\| Shrink-swell (LEP 3-6)	10.50	Caving potential	11.00
			\|	Bedrock (soft) from 20 to 40"	10.46
			1		,
Millsholm loam-	35				
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
		\| Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00
			1	Low caving potential	10.10
			1		

Table 15.--Building Site Development (Part 2)--Continued


Table 15.--Building Site Development (Part 2)--Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations	
		Limitation	\|Value	Limitation	\| Value
	1	1			
		\|			
597 :					
Yollabolly very gravelly loam-	55	\| Severe		Severe	
		Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
		\| Bedrock (hard) <20" depth	$\mid 1.00$	Slopes >15\%	11.00
		Possible frost action	10.50	Low caving potential	10.10
	\|	\|			,
Freezeout very gravelly sandy		\|			\|
loam----------------------	30	\| Severe	\| Severe		
		Slopes >15\%	11.00	Slopes >15\%	11.00
		Possible frost action	10.50	Caving potential	\| 1.00
		\| Bedrock (hard) from 20 to $40 "$	$10.46$	Bedrock (hard) <40" depth	$1.00$
		\|			
599:					
Freezeout very gravelly sandy					\|
loam-----------------------	55	\| Severe		Severe	
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
		\| Possible frost action	$10.50$	Caving potential	$1.00$
		\| Bedrock (hard) from 20 to 401	$10.46$	Bedrock (hard) <40" depth	$1.00$
				drock	
Yollabolly very gravelly loam-	30	\| Severe		Severe	
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
		\| Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00
		\| Possible frost action	10.50	Low caving potential	10.10
600:					
Freezeout very gravelly sandy					\|
loam-----------------------	50	\| Severe		Severe	1
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
		\| Possible frost action	10.50	Caving potential	\| 1.00
		\| Bedrock (hard) from 20 to 40 "	10.46	Bedrock (hard) <40" depth	11.00
Yollabolly very gravelly loam-	35	\| Severe		Severe	
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	\| 1.00
		\| Bedrock (hard) <20" depth	11.00	Slopes >15\%	\| 1.00
		\| Possible frost action	10.50	Low caving potential	10.10
	\|	\|			
610:					\|
Neuns very gravelly loam	40			Severe	
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
		Bedrock (hard) from 20 to 401	10.46	Caving potential	\| 1.00
				Bedrock (hard) <40" depth	11.00
Bamtush very gravelly loam----	25	\| Severe		Severe	
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
				Caving potential	11.00
Goulding gravelly loam-------	20	\| Severe		Severe	
		\| Slopes >15\%	11.00	Bedrock (hard) <40" depth	11.00
		\| Bedrock (hard) <20" depth	11.00	Slopes >15\%	11.00
				Low caving potential	10.10
					\|
			\|		\|
Bamtush very gravelly loam----	55	\|Severe	\|	Severe	1
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
				Caving potential	\| 1.00
					\|
Marpa very gravelly sandy loam	30	\| Severe		Severe	1
		\| Slopes >15\%	11.00	Slopes >15\%	11.00
		\| Bedrock (hard) from 20 to 40"	10.46	Caving potential	11.00
	\|	\|		Bedrock (hard) <40" depth	11.00
					\|

Table 15.--Building Site Development (Part 2)--Continued


The interpretation for local roads and streets evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, organic Unified classes for low soil strength (PT, OL, and OH), amount of clay, depth to hard or soft bedrock, depth to a thick or thin cemented pan, rock fragments more than 3 inches in size, bulk density, and the caving potential of the soil.

The interpretation for shallow excavations evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), potential for frost action, depth to hard or soft bedrock, depth to a thick or thin cemented pan, rock fragments more than 3 inches in size, and soil strength expressed as the AASHTO group index number (AASHTO GI).
(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Map symbol and soil name									
	\|Pct.		Septic tank absorption fields		Sewage lagoons				
	1	Limitation	\| Value	Limitation	Value				
	1								
```100, 101: Capay, occasionally or frequently flooded-```	90		1	I	\|				
		\|	1 \|		\|				
			1 \|		\|				
		\| Severe	\|		\| Severe	\|			
		Flooding \geq occasional	11.00	Flooding \geq occasional	\| 1.00				
		Permeability <.6"/hr in 24-72"	11.00	Wetness from 3.5 to 5^{\prime} depth	10.71				
		Wetness <4' depth	11.00						
			\|		\|				
102:			1 \|		\|				
Capay clay loam-	90	\|Severe				Moderate	\|		
		\| Permeability <.6"/hr in 24-72"	11.00	Wetness from 3.5 to 5 ' depth	10.7110.50				
		Wetness <4' depth	11.00	Rare flooding					
		Rare flooding	10.50		10.50				
			\|						
103:			1	1	,				
Capay clay loam, frequently			1 \|		\|				
flooded-	90	\| Severe	\|		\| Severe	\|			
		\| Flooding \geq occasional	11.00	Flooding \geq occasional	$\begin{aligned} & \mid 1.00 \\ & \mid 0.71 \\ & \mid \end{aligned}$				
	1 \|	Permeability <.6"/hr in 24-72"	11.00	Wetness from 3.5 to 5^{\prime} depth					
		Wetness <4' depth	11.00						
			\|			\|			
104:	1 \|	\|	1		\|				
Willows silty clay, frequently			1 \|		\|				
flooded-----------------------\|	90	\| Severe	\|		Severe				
		\| Flooding \geq occasional	11.00	Flooding \geq occasional	1.00				
		Permeability <.6"/hr in 24-72"	11.00	Wetness from 3.5 to 5' depth					
		\| Wetness <4' depth	11.00		10.71				
			\|						
105:	1 \|	\|	1 \|	\|					
Willows silty clay, occasionally		\|	1 \|	\|	\|				
flooded--------------------------	90	\| Severe	1 \|	\| Severe	1				
		\| Flooding \geq occasional	\|1.00			11.00			
		Permeability <.6"/hr in 24-72" Wetness <4' depth	\|1.00	Flooding \geq occasional Wetness from 3.5 to 5' depth	10.71				
			11.00	Wetness from 3.5 to 5^{\prime} depth					
106:	\|		1 \|	\|					
Willows silty clay----------------	90	\|Severe	\|		\|Moderate	,			
		Permeability <.6"/hr in 24-72"	11.00	Wetness from 3.5 to 5' depth Rare flooding	10.7110.50				
		\| Wetness <4' depth	11.00						
		\| Rare flooding	10.50		10.50				
			\|		Rare flooding				
107:	\|		1 \|	\|	,				
Scribner silt loam, occasionally			$\mid 1$						
flooded-	80	\| Severe	$\mid 1$	\| Severe	\|				
		\| Flooding \geq occasional	11.00	Wetness <3.5' depth	11.00				
		\| Wetness <4' depth ${ }^{\text {P }}$ (${ }^{\text {Permeability of }} .6-2 \mathrm{hr}$	11.00	Flooding \geq occasional	\|1.00 $\mid 0.50$				
			10.50	Permeability .6-2"/hr (some seepage)					
		\| Permeability of .6-2"/hr	\|			$\mid 0.50$			
108: \|									1
Scribner silt loam-	80	Severe	1 \|	\| Severe	-				
		Wetness <4' depth	11.00	Wetness <3.5' depth	1.00				
		\| Rare flooding	10.50	\| Permeability .6-2"/hr (some seepage)	10.50				
		\| Permeability of .6-2"/hr	10.50	Rare flooding	10.50				
			,						

Table 16.--Sanitary Facilities (Part 1)--Continued

Table 16.--Sanitary Facilities (Part 1)--Continued

Map symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons		
	\|	Limitation	\|Value		Limitation	\| Value
	1					
		\|				
557 :		1			\|	
Speaker gravelly loam--	20	\| Severe		Severe	\|	
		Slopes >15\%	11.00	Slopes >8\%	\| 1.00	
		\| Permeability <.6"/hr in 24-72"	1.00	Bedrock (soft) < 40" depth	$\text { \| } 1.00$	
		Depth to bedrock <40"	1.00	Organic matter (PT, OL, OH)	1.00	
564:		I				
Fouts gravelly loam----	35	\|Severe		Severe		
		\| Permeability <.6"/hr in 24-72"	1.00	Slopes >8\%	11.00	
		Slopes >15\%	11.00	Bedrock (hard) <40" depth	\| 1.00	
		\| Depth to bedrock <40"	11.00			
		,				
Yorkville clay loam----	35	\| Severe		Severe		
		\| Permeability <.6"/hr in 24-72"	11.00	Slopes >8\%	\| 1.00	
		Slopes >15\%	11.00			
		\| Depth to bedrock 40-72"	10.01			
		\mid				
Squawrock gravelly loam	15	\|Severe		Severe		
		\| Permeability <.6"/hr in 24-72"	11.00	Slopes >8\%	11.00	
		\| Slopes >15\%	$\mid 1.00$	Bedrock (hard) <40" depth	\| 1.00	
		\| Depth to bedrock <40"	11.00			
570 :						
Endoaquolls, frequently	\| 90	\| Severe		Severe		
		\| Ponding (any duration)	11.00	Wetness <3.5' depth	\| 1.00	
		\| Wetness <4' depth	1.00	Ponding (any duration)	1.00	
		\| Permeability <.6"/hr in 24-72"	1.00	Permeability .6-2"/hr (some seepage)	0.50	
590:						
Neuns very gravelly loa	\| 35	\|Severe		Severe		
		\| Slopes >15\%	11.00	Slopes >8\%	\| 1.00	
		\| Depth to bedrock <40"	11.00	Bedrock (hard) <40" depth	11.00	
		\| Permeability of .6-2"/hr	10.50	Organic matter (PT, OL, OH)	\| 1.00	
		,				
Marpa very gravelly sand	30	\| Severe		Severe		
		\| Slopes >15\%	11.00	Slopes >8\%	11.00	
	,	\| Permeability <.6"/hr in 24-72"	\| 1.00	Bedrock (hard) <40" depth	11.00	
		\| Depth to bedrock <40"	\| 1.00	Organic matter (PT, OL, OH)	11.00	
	1	\|				
Goulding gravelly loam-	\| 20	\| Severe		Severe		
		\| Depth to bedrock <40"	11.00	Bedrock (hard) <40" depth	11.00	
	\|	\| Slopes >15\%	\| 1.00	Slopes > 8%	\| 1.00	
		\| Impermeable above 24"	\| 1.00	Organic matter (PT, OL, OH)	\| 1.00	
	\|	\|				
591:		,				
Neuns very gravelly loa	\| 35	\| Severe		Severe		
	\|	Slopes >15\%	11.00	Slopes >8\%		
	\|	\| Depth to bedrock <40"	1.00	Bedrock (hard) <40" depth	11.00	
	\|	Permeability of .6-2"/hr	10.50	Organic matter (PT, OL, OH)	11.00	
		\|				
Sheetiron gravelly sandy	\| 30			Severe		
		\| Slopes >15\%	11.00	Slopes >8\%	\| 1.00	
	\|	\| Depth to bedrock <40"	\| 1.00	Permeability >2"/hr (seepage)	\| 1.00	
	\|	\|		Bedrock (hard) <40" depth	\| 1.00	
		,			1.00	
Goulding gravelly loam-	\| 20	\|Severe		Severe		
		\| Depth to bedrock <40"	\| 1.00	Bedrock (hard) <40" depth	\| 1.00	
	\|	\| Slopes >15\%	\| 1.00	Slopes >8\%	11.00	
	\|	\| Impermeable above 24"	\| 1.00	Organic matter (PT, OL, OH)	11.00	

Table 16.--Sanitary Facilities (Part 1)--Continued

Table 16.--Sanitary Facilities (Part 1)--Continued

The interpretation for septic tank absorption fields evaluates the following soil properties at varying depths in the soil: flooding; ponding; wetness; slope; subsidence of organic soils; depth to hard or soft bedrock; depth to a cemented pan; permeability that is too fast, allowing seepage; and permeability that is too slow or an impermeable layer at shallow a depth.

The interpretation for sewage lagoons evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, organic Unified classes for low strength (PT, OL, and OH), depth to hard or soft bedrock, depth to a cemented pan, rock fragments more than 3 inches in size, and permeability that is too fast, allowing seepage.
(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and rock fragments are reported on a weight basis. A explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Map symbol and soil name	Pct.	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill						
		Limitation	\|Value	Limitation	\|Value	Limitation	\| Value					
100:												
Capay clay loam, occasionally				Severe	Poor							
flooded---------------------	90	\| Severe										
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	\| Silty clay or clay 10-60"	\| 1.00					
		Wetness <6' depth	11.00	Occasional flooding	10.60	Clay or silty clay	\| 1.00					
		Clay or silty clay	1.00									
101:												
Capay silty clay, frequently \|												
flooded-------------------		\| Severe		Severe		\| Poor						
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	11.00					
		Clay or silty clay	\| 1.00	Frequent flooding	10.80	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	11.00					
		Wetness <6' depth	1.00			Clay or silty clay	11.00					
$102 \text { : }$												
Capay clay loam	90	\| Severe		Severe		\| Poor						
		Wetness <6' depth	11.00	Wetness <5' depth	\| 1.00	Silty clay or clay 10-60"	\| 1.00					
		Clay or silty clay	$\text { \| } 1.00$	Rare flooding	10.40	Clay or silty clay	11.00					
		Rare flooding	10.50									
103:												
Capay clay loam, frequently \|												
flooded-------------------	90	\| Severe		Severe		\| Poor						
		Flooding \geq occasional		Wetness <5' depth		Silty clay or clay 10-60"	\| 1.00					
		Wetness <6' depth	$\text { \| } 1.00$	Frequent flooding	10.80	Clay or silty clay	11.00					
		Clay or silty clay	1.00									
104, 105:												
Willows, frequently or												
occasionally flooded-	90	\| Severe		Severe		\| Poor						
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	11.00					
		Clay or silty clay	\|1.00	Frequent flooding	10.80	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	\| 1.00					
		Wetness <6' depth	1.00	Occasional flooding	10.60	Clay or silty clay	11.00					
106:												
Willows silty clay	90	\|Severe		Severe		\| Poor						
		Clay or silty clay	1.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	11.00					
		Wetness <6' depth \|	1.00	Rare flooding	10.40	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00					
		SAR >13; not aridic climate	1.00			Clay or silty clay	1.00					

Map symbol and soil name	\| Pct.	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\| Value	Limitation	\|Value	Limitation	\| Value	
					\|Value			
107:								
Scribner silt loam, occasionallyflooded---------------------								
	80	\| Severe		Severe		\| Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Wetness <18" depth	1.00	
		Wetness <6' depth	1.00	Occasional flooding	10.60			
108:								
Scribner silt loam	80	\| Severe		Severe		\| Poor		
		Wetness <6' depth	1.00	Wetness <5' depth	11.00	Wetness <18" depth	1.00	
		Rare flooding	0.50	Rare flooding	10.40			
109:								
Scribner silt loam, frequently								
flooded--	80	\|Severe		Severe		\| Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Wetness <18" depth	1.00	
		Wetness <6' depth	1.00	Frequent flooding	10.80			
110:								
Hustabel sandy loan	80							
		\| Wetness <6' depth	1.00	Wetness <5' depth	\| 1.00	\| Permeability >2.0 in/hr	10.50	
		Rare flooding	0.50	Seepage in 20-40" depth	1.00	Wetness 18-40" depth	10.11	
				Rare flooding	10.40			
112 :		\|						
Westfan loam	80	\| Severe		Severe		\| Poor		
		SAR >13; not aridic climate		Seepage in 20-40" depth		SAR >13; not aridic climate	1.00	
		Rare flooding	0.50	Rare flooding	10.40	Permeability >2.0 in/hr	10.50	
113:								
Westfan loam, sodi	85					\| Poor		
		\| SAR >13; not aridic climate		1.00	Seepage in 20-40" depth	11.00	SAR >13; not aridic climate	1.00
		Rare flooding	0.50	Rare flooding	10.40	Permeability >2.0 in/hr	10.50	
		-						
114:								
Westfan clay loam	80							
		\| Rare flooding	0.50	Rare flooding	10.40	\| Silt or clay texture 10-60"	0.50	
		Clay loam, silty clay,				Clay loam, silty clay,		
		silty clay loam	0.50			silty clay loam	10.50	
115, 116, 117, 118:Clear Lake, occasionally or		\|						
frequently flooded-------	190	\|Severe		\| Severe		\| Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	\| Silty clay or clay 10-60"	1.00	
		Clay or silty clay	1.00	Occasional flooding	10.60	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}, \mathrm{or} \mathrm{MH)}$	\| 1.00	
		Wetness <6' depth	1.00	Frequent flooding	10.80	clay or silty clay	1.00	

Table 17.--Sanitary Facilities (Part 2)--Continued

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value	
131, 133:								
Corbiere, frequently or occasionally flooded--	85							
		\| Severe		Severe		\| Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	1.00	
		\| Wetness <6' depth	1.00	Frequent flooding	10.80	\| Packing (OL, OH, CH, or MH)	1.00	
		\| Clay or silty clay	1.00			Clay or silty clay	1.00	
136:								
Colusa loam	85	\| Severe		Severe		\| Poor		
		\| SAR >13; not aridic climate		1.00	Wetness <5' depth	11.00	\| SAR >13; not aridic climate	1.00
		\| Wetness <6' depth	1.00	Rare flooding	10.40	EC >16 mmhos and not arid	0.47	
		\| Rare flooding	0.50					
141:								
Myers clay	90	\| Moderate		Moderate		\mid Poor		
		Rare flooding	0.50	Rare flooding	10.40	\| Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00	
144:								
Hillgate clay loam	85	\|Moderate		Slight		\| Poor		
		Clay loam, silty clay,				\| Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00	
		silty clay loam	0.50			Silt or clay texture 10-60"	0.50	
						Clay loam, silty clay,		
						silty clay loam	0.50	
145, 147:								
Hillgate loam	90	\|slight		Slight		\| Poor		
						\| Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00	
150:								
Arbuckle sandy loam	85	\|Slight				\| Good		
				Seepage in 20-40" depth	1.00			
151:								
Arbuckle sandy loam-----	50	\|Slight		Severe		\| Good		
				Seepage in 20-40" depth	11.00			
Hillgate loam----------	40	\| Slight		Slight		Poor		
						\| Packing (OL, OH, CH, or MH)	1.00	
152:								
Arbuckle gravelly loam--	85	```Moderate Clay loam, silty clay, silty clay loam```		Slight		\|Fair		
						Silt or clay texture 10-60"	0.50	
			0.50			\| Clay loam, silty clay,	0.50	
						Rock fragments < 75 mm		
						25-50\%	0.36	

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	\|Pct.	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value	
		1 \|						
185:								
Riverwash-----------------------	95	\| Severe		Severe		Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	\| 1.00	\| Textures, fs, cos, or sg	11.00	
		Wetness <6' depth	1.00	Seepage in 20-40" depth	11.00	Wetness <18" depth	\| 1.00	
		Sandy textures (cos, s, fs, \|		Frequent flooding	10.80	Permeability >2.0 in/hr	10.50	
		lcos, or vfs)	1.00					
187:								
Westfan loam, occasionally								
flooded------------------------- \|	85	\| Severe		Severe		\| Poor		
		Flooding \geq occasional	1.00	Seepage in 20-40" depth	11.00	SAR >13; not aridic climate	1.00	
		SAR >13; not aridic climate\|	1.00	Occasional flooding	10.60	Permeability >2.0 in/hr	0.50	
188:								
Westfan loam, clay substratum-----\|	80	\| Moderate		Moderate		\| Fair		
		Rare flooding	0.50	Rare flooding	0.40	\| Silt or clay texture 10-60"	0.50	
		Clay loam, silty clay,				Clay loam, silty clay,		
		silty clay loam	0.50			silty clay loam	0.50	
189 :								
Arand very gravelly sandy loam----	85			Severe		\| Poor		
		\| Sandy textures (cos, s, fs,		Seepage in 20-40" depth	1.00	\| Texture=s, fs, cos, or sg	1.00	
		lcos, or vfs)	1.00	Rare flooding	10.40	Rock fragments $<75 \mathrm{~mm}$		
		Seepage in bottom layer	1.00			$25-50 \%$	0.70	
		Rare flooding	0.50			Permeability >2.0 in/hr	0.50	
190:								
Arand very gravelly loam	85			Severe		Poor		
		Seepage in bottom layer	1.00	Seepage in 20-40" depth	11.00	Rock fragments $<75 \mathrm{~mm}>50 \%$	1.00	
		Rare flooding	0.50	Rare flooding	10.40	Permeability $>2.0 \mathrm{in} / \mathrm{hr}$	0.50	
		Sandy textures (cosl, ls, lfs, or lvfs)	0.50			Texture of lcos, ls, lfs,		
		lfs, or lvfs)	0.50			or vfs	0.50	
193 :								
Westfan gravelly loam------------\|	80	\| Moderate		\| Moderate		\| Fair		
		Rare flooding	0.50	Rare flooding	10.40	Rock fragments < 75 mm		
						25-50\%	0.08	
200:		\|						
Clear Lake clay, occasionally								
flooded------------------------	90	\| Severe		Severe		\| Poor		
		Flooding \geq occasional	1.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	1.00	
		Clay or silty clay	1.00	Occasional flooding	10.60	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00	
		Wetness <6' depth	1.00			Clay or silty clay	1.00	

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	\|rench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Limitation	\| Value	Limitation	\| Value	Limitation	\| Value
204:							
Capay clay, occasionally flooded--\|	90	\| Severe		Severe		Poor	
		Flooding \geq occasional	11.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	\| 1.00
		Clay or silty clay	\| 1.00	Occasional flooding	10.60	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	\| 1.00
		\| Wetness <6' depth	11.00			Clay or silty clay	11.00
205:							
Capay clay	90	\| Severe		\| Severe		Poor	
		Clay or silty clay	11.00	Wetness <5' depth	11.00	Silty clay or clay 10-60"	\| 1.00
		Wetness <6' depth	11.00	Rare flooding	10.40	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	\| 1.00
		Rare flooding	10.50			Clay or silty clay	11.00
206:							
Capay clay-----------------------\|	90			Severe		Poor	
		\| Clay or silty clay	11.00	Wetness <5' depth	1.00	Silty clay or clay 10-60"	11.00
		Wetness <6' depth	11.00			Packing (OL, OH, CH, or MH)	\| 1.00
						Clay or silty clay	11.00
210, 211:							
Corval--	85	\| Moderate		Moderate		Fair	
		Rare flooding	10.50	Rare flooding	10.40		10.50
		Clay loam, silty clay,				Clay loam, silty clay,	
		silty clay loam	10.50			silty clay loam	10.50
212:							
Ayar clay	85	\| Severe		Moderate		Poor	
		Clay or silty clay	11.00	Slopes 8 to 15\%	0.16	Silty clay or clay 10-60"	11.00
		Lithic or paralithic				Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	11.00
		bedrock <72"	1.00			Clay or silty clay	$\text { \| } 1.00$
		Slopes 8 to 15\%	10.16				
213:							
Ayar clay-	85	\| Severe		Severe		Poor	
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >15\%	\| 1.00
		Clay or silty clay	\| 1.00			Silty clay or clay 10-60"	\| 1.00
		Lithic or paralithic				Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	\| 1.00
		bedrock <72"	11.00				
215:							
Altamont silty clay--------------	45	\| Severe		SevereSlopes>15\%		Poor	
		Slopes >15\%	1.00		11.00	Slopes >15\%	\| 1.00
		Lithic or paralithic	\|			Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	\| 1.00
		bedrock <72"	1.00			Depth to bedrock 40-60"	10.42

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill			
		Limitation	\|Value		Limitation	\| Value		Limitation	\| Value
		1							
			\|			\|			
232 :									
Maywood gravelly loam, occasionally flooded-			\|						
	85	\| Severe		\| Moderate		\| Good			
		\| Flooding \geq occasional	\| 1.00	\| Occasional flooding	10.60				
		\| Seepage in bottom layer	11.00						
233:									
Eastpark clay loam	95	\| Moderate		\|slight		\| Fair			
		\| Clay loam, silty clay,				Rock fragments <75 mm			
		\| silty clay loam	10.50			$25-50 \%$	0.97		
						\| Silt or clay texture 10-60"	0.50		
						Clay loam, silty clay,			
						silty clay loam	0.50		
241:									
Contra Costa loam------	55	\| Severe		\| Severe		\| Poor			
		\| Slopes >15\%	11.00	Slopes >15\%		\| Slopes >15\%	1.00		
		\| Lithic or paralithic		Bedrock depth <40"	1.00	Silty clay or clay 10-60"	\| 1.00		
		\| bedrock <72"	11.00			clay or silty clay	1.00		
		\| Clay or silty clay	\| 1.00						
Altamont silty clay----	35			\| Severe		\| Poor			
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >15\%	1.00		
		Lithic or paralithic				Packing (OL, OH, CH, or MH)	1.00		
		bedrock <72"	11.00			\| Depth to bedrock 40-60"	0.42		
253:									
Millsholm loam	55	\|Severe		\| Severe		\| Poor			
		Lithic or paralithic		Bedrock depth <40"	11.00	Depth to bedrock <40"	1.00		
		bedrock <72"	11.00	Slopes 8 to 15\%	10.16	Slopes 8 to 15\%	0.16		
		Slopes 8 to 15\%	10.16						
Altamont silty clay-----	20								
		Lithic or paralithic		Slopes 8 to 15\%	0.16	Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00		
		bedrock <72"	11.00			Depth to bedrock 40-60"	10.42		
		Slopes 8 to 15\%	10.16			Slopes 8 to 15%	10.16		
Rock outcrop-----------255 :	15	Not rated		Not rated		Not rated			
Millsholm loam-	55	\| Severe		\| Severe		\| Poor			
		Lithic or paralithic		Bedrock depth <40"	11.00	Depth to bedrock <40"	11.00		
		bedrock <72"	11.00	Slopes >15\%	11.00	Slopes >15\%	11.00		
		Slopes >15\%	11.00						
Rock outcrop-	35	\| Not rated		Not rated		Not rated			

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.\|	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\| Value	Limitation	Value	Limitation	Value	
			\|		\|			
275 :								
Goldeagle clay loam--------------\|	45	\| Severe		\| Severe		\mid Poor		
		\| Slopes >15\%	\| 1.00	Slopes >15\%	11.00	Slopes >15\%	1.00	
		Lithic or paralithic				Silt or clay texture 10-60"\|0.	10.50	
		bedrock <72"	11.00			```Clay loam, silty clay, silty clay loam```		
		Clay loam, silty clay, silty clay loam					10.50	
Positas gravelly sandy loam------\|	25	Severe		\| Severe			\| Poor	
		Slopes >15\%	11.00	\| Slopes >15\%	1.00	\| Slopes >15\%	1.00	
		clay or silty clay	11.00	Seepage in 20-40" depth	1.00	Silty clay or clay 10-60"	\|1.00 1.00	
						Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)		
Balcom silt loam-----------------	15	\| Severe		Severe		Poor \|	\|	
		Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Depth to bedrock <40"	11.00	
		bedrock <72"	11.00					
		Seepage in bottom layer	\| 1.00					
276:								
Positas gravelly sandy loam------\|	$90 \mid$	\| Severe		SevereSlopes >15\%		\| Poor		
		Slopes >15\%	\| 1.00		\| 1.00	Slopes >15\%	\| 1.00	
		Clay or silty clay	11.00	Seepage in 20-40" depth	11.00	Silty clay or clay 10-60"	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \end{aligned}$	
						Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH) ${ }^{\text {l }}$		
			1				$\text { \| } 1.00$	
280:								
Skyhigh gravelly clay loam-	45	\| Severe		SevereSlopes >15\%		Poor		
		Slopes >15\%	11.00		1.00	Slopes >15\%	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Silty clay or clay 10-60" Packing (OL, OH, CH, or MH)	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \end{aligned}$	
		bedrock <72"						
		Clay or silty clay	\| 1.00					
Millsholm loam-------------------\|	30	\| Severe		Severe		\| Poor		
		Slopes >15\%	11.00	```Slopes >15% Bedrock depth <40"```	11.00	Depth to bedrock <40" Slopes >15\%		
		Lithic or paralithic bedrock <72"	1.00		11.00		$\text { \| } 1.00$	
						Slopes >15\%	\|	
300:								
Contra Costa loam-----------------	55	\| Severe		Severe		\| Poor	11.00	
		\| Slopes >15\%	\| 1.00	\| Slopes >15\%	\| 1.00	\| Slopes >15\%		
		Lithic or paralithic		Bedrock depth <40"	\| 1.00	Silty clay or clay 10-60" Clay or silty clay	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \end{aligned}$	
		bedrock <72"	11.00					
		Clay or silty clay	11.00					

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Limitation	\|Value	Limitation	\| Value	Limitation	\|Value
300:							
Millsholm loam	45	Severe		Severe		Poor	
			11.00	$\begin{aligned} & \text { Slopes >15\% } \\ & \text { Bedrock depth <40" } \end{aligned}$	\| 1.00	Depth to bedrock <40"Slopes >15\%	\| 1.00
		Lithic or paralithic			11.00		\| 1.00
		bedrock <72"	11.00				
305:							
Contra Costa loam	85	Severe		Severe		Poor	
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >15\%	1.00
		Lithic or paralithic		Bedrock depth <40"	\| 1.00	Silty clay or clay 10-60"	\| 1.00
		bedrock <72"	1.00			Clay or silty clay	11.00
		Clay or silty clay	1.00				
311 :							
Contra Costa loam	85	Severe		Severe		Poor	
		Lithic or paralithic		Bedrock depth <40"	11.00	Silty clay or clay 10-60"	\| 1.00
		bedrock <72"	11.00	Slopes 8 to 15\%	10.63	Clay or silty clay	\| 1.00
		Clay or silty clay	$\text { \| } 1.00$			Depth to bedrock <40"	11.00
		Slopes 8 to 15\%	10.63				
312, 313: \|							
Saltcanyon loam	90	Moderate		Moderate		Fair	
		\| Rare flooding	10.50	Rare flooding	10.40	Silt or clay texture 10-60"\|0.	0.50
		Clay loam, silty clay,				Clay loam, silty clay, silty clay loam	
		silty clay loam	10.50				10.50
315 :							
Mallard clay loam	90	ModerateClay loam, silty clay,		Slight		Fair	
						Silt or clay texture 10-60"	10.50
		Clay loam, silty clay, silty clay loam	10.50			Clay loam, silty clay,silty clay loam	
							10.50
316 :							
Hillgate loam-	90	Slight	1	Slight		Poor	
						Packing (OL, OH, CH, or MH)	1.00
320:							
Millsholm loam-	85	Severe	1 \|	Severe		Poor	
		Lithic or paralithic		Bedrock depth <40"		Depth to bedrock <40"	
		bedrock <72"	\| 1.00	Slopes >15\%	11.00	Slopes >15\%	\|1.00
		Slopes >15\%	\| 1.00				

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\|Value	Limitation	\|Value	Limitation	\| Value	
		\|						
329:								
Sehorn silty clay------	40	\| Severe		\| Severe		\| Poor		
		\| Slopes >15\%	\| 1.00	\| Slopes >15\%	\| 1.00	Slopes >15\%	1.00	
		\| Lithic or paralithic				Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, or MH)	1.00	
		bedrock <72"	11.00			Depth to bedrock <40"	1.00	
				Severe				
Millsholm loam-	30	\|Severe				Poor		
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	\| Depth to bedrock <40"	11.00	
				Bedrock depth <40"	11.00	Slopes >15\%	11.00	
		bedrock <72"	11.00					
Altamont silty clay-----	15	\| Severe		Severe		\mid Poor		
		\| Slopes >15\%	11.00	\| Slopes >15\%	11.00	\| Slopes >15\%	1.00	
		Lithic or paralithic				Packing (OL, OH, CH, or MH)	\| 1.00	
		bedrock <72"	11.00			Depth to bedrock 40-60"		
330 :								
Millsholm loam---------	60	\| Severe				\| Poor		
		Slopes >15\%	1.00	evere Slopes >15\%	11.00	Depth to bedrock <40"	1.00	
		\| Lithic or paralithic		Bedrock depth <40"	11.00	Slopes $>15 \%$	1.00	
		bedrock <72"	11.00					
		\|Severe						
Contra Costa loam------	25			Severe \|			Poor	
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >15\%	11.00	
		Lithic or paralithic bedrock <72"		Bedrock depth <40"	11.00			
			\| 1.00			Clay or silty clay	1.00	
		Clay or silty clay	11.00		\|			
331:								
Sehorn silty clay------	35	Severe		Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >15\%	1.00	
		Lithic or paralithic				Packing (OL, OH, CH, or MH)	\| 1.00	
		bedrock <72"	11.00			Depth to bedrock <40"	1.00	
Millsholm loam-	30	\| Severe		\| Severe		\| Poor		
		\| Slopes >15\%	11.00	Slopes >15\%	1.00	Depth to bedrock <40"	\| 1.00	
		\| Lithic or paralithic		Bedrock depth <40"	11.00	Slopes >15\%	11.00	
		bedrock <72"	11.00					
Rock outcrop-	20	\| Not rated		\| Not rated		Not rated		
332 :								
Millsholm loam--	50	\| Severe		\| Severe				
		\| Slopes >15\%	11.00	Slopes >15\%	\| 1.00	\| Depth to bedrock <40"	11.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Slopes >15\%	11.00	
		bedrock <72"	11.00					

Map symbol and soil name	\mid Pct. ${ }^{\text {P }}$	\| Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\|Value	Limitation	\| Value	Limitation	Value	
					\|			
332 :								
Rock outcrop	40	Not rated		\| Not rated		\| Not rated		
334:								
Millsholm loam--------------------	70	\| Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Depth to bedrock <40"	11.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Slopes >15\%	\| 1.00	
		bedrock <72"	11.00					
Contra Costa loam---------------- \|	15	\| Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Slopes >15\%	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	\| 1.00	Silty clay or clay 10-60"		
		bedrock <72"	11.00			Clay or silty clay		
		Clay or silty clay	11.00					
337:								
Millsholm loam-------------------\|	50	\| Severe		\| Severe \quad Bedrock depth <40"		\| Poor		
		Lithic or paralithic			\| 1.00	\| Depth to bedrock <40"	11.00	
		bedrock < 72"	\| 1.00	Slopes 8 to 15\%	10.16	Slopes 8 to 15\%	\| 0.16	
		Slopes 8 to 15\%	\| 0.16					
Saltcanyon loam------------------\|	35	\|Moderate \| Clay loam, silty clay,		Moderate		\| Fair		
				Slopes 8 to 15\%	10.04	Silt or clay texture 10-60" Clay loam, silty clay, silty clay loam	10.50	
		silty clay loam	10.50					
		Slopes 8 to 15\%	10.04				10.50	
						Slopes 8 to 15\%	10.04	
345:								
Skyhigh gravelly clay loam-------	40	\| Severe				Poor		
		Slopes >15\%	11.00		11.00	Slopes >15\%	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Silty clay or clay 10-60"	11.00	
		bedrock < 72 "	11.00			Packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}, \mathrm{or} \mathrm{MH)\mid}$	\| 1.00	
		Clay or silty clay	11.00					
Sleeper clay loam----------------	30			\| Severe		\| Poor	11.00	
		Slopes >15\%	11.00		11.00	Slopes >15\%		
		Lithic or paralithic		Bedrock depth from 40-60"	10.42	Clay or silty clay	11.00	
		bedrock <72"	11.00				\| 1.00	
		Clay or silty clay	\| 1.00					
Millsholm loam-------------------	15	\| Severe		SevereSlopes >15\%Bedrock depth <40"		\| Poor	\| 1.00	
		Slopes >15\%	\| 1.00		11.00	Depth to bedrock <40"		
		Lithic or paralithic			11.00	Slopes >15\%	11.00	
		bedrock <72"	11.00					

Table 17.--Sanitary Facilities (Part 2)--Continued

Table 17.--Sanitary Facilities (Part 2)--Continued

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	$\mid \text { Pct. } \mid$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Limitation	\| Value	Limitation	\|Value		Limitation	\| Value
542 :								
Henneke sandy loam---------------\|	25	\| Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Depth to bedrock <40"	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	\| 1.00	Slopes >15\%	11.00	
		\| bedrock <72"	\| 1.00			Silty clay or clay 10-60"	11.00	
		Clay or silty clay	\| 1.00					
545:								
Henneke sandy loam----------------1)	40	Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Depth to bedrock <40"	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	1.00	Slopes >15\%	11.00	
		bedrock <72"	11.00			Silty clay or clay 10-60"	1.00	
		clay or silty clay	\| 1.00					
Montara gravelly sandy loam-	30	\| Severe		\| Severe		Poor		
		\| Slopes >15\%	11.00	Slopes >15\%	11.00	\| Depth to bedrock <40"	11.00	
		Lithic or paralithic bedrock <72"		Bedrock depth <40"	11.00	Slopes >15\% Rock fragments $<75 \mathrm{~mm}$ 25-50\%	11.00	
			11.00					
							10.32	
Rock outcrop	15	Not rated		Not rated		Not rated		
548, 549:								
Henneke sandy loam-------------\|	45	Severe \mid Slopes >15\%		Severe		Poor		
				Slopes >15\%	\| 1.00	\| Depth to bedrock <40"	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Slopes >15\%	11.00	
		bedrock <72"	11.00			Silty clay or clay 10-60"	11.00	
		Clay or silty clay	11.00					
Okiota loam----------------------\|	35	\| Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	\| 1.00	Depth to bedrock <40"		
		Lithic or paralithic		Bedrock depth <40"	\| 1.00	Slopes >15\%	11.00	
		bedrock <72"	11.00			Silty clay or clay 10-60"	11.00	
		Clay or silty clay	11.00			Rock fragments $<75 \mathrm{~mm}$		
						25-50\%	10.08	
557:								
Neuns very gravelly loam---------\|	35			Severe		\| Poor		
		Slopes >15\%	\| 1.00	Slopes >15\%	11.00	\| Slopes >15\%	\| 1.00	
		Lithic or paralithic		Bedrock depth <40"	11.00	Depth to bedrock <40"	11.00	
		bedrock <72"	11.00			Rock fragments <75 mm >50\%	1.00	
Bamtush very gravelly loam-------\|	30	\| Severe		\| Severe		\| Poor		
		Slopes >15\%	11.00	Slopes >15\%	11.00	Slopes >15\%	\| 1.00	
		Lithic or paralithic				Rock fragments <75 mm >50\%	1.00	
		bedrock <72"	11.00					

Table 17.--Sanitary Facilities (Part 2)--Continued

Table 17.--Sanitary Facilities (Part 2)--Continued

Table 17.--Sanitary Facilities (Part 2)--Continued

Map symbol and soil name	Pct.	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Limitation	\|Value	Limitation	\| Value	Limitation	\| Value
651:							
Marpa very gravelly sandy loam----	30	Severe		Severe		Poor	
		Slopes >15\%	11.00	Slopes >15\%	1.00	Slopes >15\%	11.00
		Lithic or paralithic		Bedrock depth <40"	11.00	Depth to bedrock <40"	11.00
		bedrock <72"	11.00			Rock fragments <75 mm >50\%	1.00

The interpretation for trench sanitary landfills evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, depth to hard or soft bedrock, depth to a thick or thin cemented pan, rock fragments 3 to 10 inches in size, sodium content (SAR) soil pH , clayey or sandy textures, and permeability that is too rapid, allowing seepage in some climates.

The interpretation for area sanitary landfills evaluates the following soil properties at varying depths in the soil: flooding, ponding, wetness, slope, depth to bedrock, depth to a cemented pan, and permeability that is too rapid, allowing seepage in some climates.

The interpretation for daily cover for landfill evaluates the following soil properties at varying depths in the soil: ponding, wetness, slope depth to bedrock, depth to a cemented pan, rock fragments more than or less than 3 inches in size, Unified classes for peat (PT), Unified classes for packing ($\mathrm{OL}, \mathrm{OH}, \mathrm{CH}$, and MH), sandy or clayey textures, soil pH , carbonates, sodium content (SAR), salinity (EC), soil climate, kaolinitic mineralogy, and permeability that is too rapid, allowing seepage.

The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.0 to 0.9 . The closer the value is to 0.0 , the greater the potential limitation. Values of 0.0 are absolute limitations based on the soil property criteria used to develop the interpretation. Values closer to 1.0 indicate lesser limitations. Features with a value of 1.0 have absolutely no limitation and are not shown in the table. Rating classes are determined by the most limiting value. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)

Map symbol and soil name	$\mid \text { Pct. } \mid$	Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil		
		Rating class and	\|Value	Rating class and	\|Value		Rating class and	\|Value
		limiting features		limiting features		limiting features		
	1		1		1		1	
					\|			\|
100:								
Capay clay loam-----------------	\| 90	Poor		\| Poor	1 \|	\| Poor	\|	
		Bottom layer not a source	10.0	\| Bottom layer not a source		Clay >40\%	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0		,	
		due to fines or a thin layer	10.0				\|	
					\|		\|	
101:								
Capay silty clay	90	Poor		\| Poor		\| Poor		
		\| Bottom layer not a source	10.0	Bottom layer not a source	10.0	$\text { Clay }>40 \%$	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	SAR 4 to 13	10.6	
		due to fines or a thin layer					\|	
					1		\|	
102, 103:								
Capay clay loam	90	Poor		\| Poor	1	\| Poor	1	
		Bottom layer not a source		\| Bottom layer not a source	10.0	\| Clay >40\%	0.0	
		Thickest layer not a source		\| Thickest layer not a source	10.0			
		due to fines or a thin layer	10.0					
104, 105, 106:								
Willows silty clay, frequently								
flooded-	90	\| Poor		\| Poor	1 \|	\| Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	\| EC >8 mmhos		
		Thickest layer not a source		Thickest layer not a source	10.0	SAR >13	10.0	
		due to fines or a thin layer	10.0			Clay >40\%	0.0	
```107, 108, 109: Scribner silt loam, occasionally```					1		\|	
					1		\|	
flooded------------------------	80	Poor		\| Poor	1	\| Fair	\|	
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Wetness from 1 to $3^{\prime}$	0.1	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0		,	
			10.0				\|	
					1		\|	
110:			$\mid 1$		1 \|		\|	
Hustabel sandy loam-	80	\| Poor		\|Fair		\|Fair	\|	
		Bottom layer not a source	10.0	Thickest layer not a source	10.0	\| SAR 4 to 13	10.9	
		Thickest layer not a source		Bottom layer a possible source	10.1		\|	
		\| due to fines or a thin layer	\|0.0					1

Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	Pct.	Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil		
		Rating class and	\|value	Rating class and	\|Value	Rating class and	\| Value	
		limiting features		limiting features		limiting features		
			1					
			1				I	
112 :			1 \|				\|	
Westfan loam-	80	Poor		Poor		Good	\|	
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0		\|	
		Thickest layer not a source		Thickest layer not a source	10.0		\|	
		due to fines or a thin layer	10.0				\|	
							\|	
113 :			\|		\| Poor			\|
Westfan loam, sodic-----	85	\| Poor				Good	\|	
		Bottom layer not a source Thickest layer not a source	10.0	Bottom layer not a source	10.0		\|	
				Thickest layer not a source	10.0		\|	
		due to fines or a thin layer	10.0				\|	
							\|	
114:			1 \|				\|	
Westfan clay loa	80	\| Poor		\| Poor		Good	\|	
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0		\|	
		Thickest layer not a source		Thickest layer not a source	10.0		\|	
		\| due to fines or a thin layer	10.0				\|	
							\|	
115, 116, 117, 118:							,	
Clear Lake clay---	90	\| Poor		\| Poor		Poor		
			10.0				10.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	SAR 4 to 13	10.9	
			10.0					
124, 125, 126: \|				1 \|				\|
Moonbend silt loam-	80	\| Poor		\| Poor		Fair		
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Clay 27 to 40\%	10.6	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0		,	
			10.0				I	
							\|	
127:			1 \|				\|	
Mallard clay loam------	85	\| Poor		Poor		Poor		
		Bottom layer not a source	10.0		10.0	Clay >40\%	0.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0		\|	
			10.0				,	
							,	
128:		\| Poor	\|					\|
Mallard loam-	85			\| Poor ${ }_{\text {Pret }}$ Bottom layer not a source		Good	\|	
		Bottom layer not a source Thickest layer not a source due to fines or a thin layer	10.0		10.0		\|	
			\|		10.0		\|	
			10.0				,	
							,	

Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	$\left\lvert\, \begin{array}{l\|} \mid \text { Pct. } \mid \end{array}\right.$	Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil	
	\|	Rating class and	\| Value $\mid$	Rating class and	\| Value	Rating class and	\|Value
	\|	limiting features		limiting features		limiting features	
			1		\|		
			\|		\|		\|
316:			1 \|				\|
Hillgate loam----------	\| 90	\| Poor	1 \|	\| Poor		\| Good	\|
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0		\|
		Thickest layer not a source		Thickest layer not a source	10.0		\|
		due to fines or a thin layer	10.0				\|
							\|
320:							
Millsholm loam	\| 85	Poor		\| Poor		Poor	
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Depth to bedrock <20"	10.0
				Thickest layer not a source	10.0		10.0
		due to fines or a thin layer	10.0			Content of rock fragments	10.5
329:							
Sehorn silty cl	40	Poor		\| Poor		Poor	
		Bottom layer not a source	10.0	\| Bottom layer not a source		Clay >40\%	10.0
		Thickest layer not a source		Thickest layer not a source	$10.0$	Slope >15\%	10.0
		due to fines or a thin layer	10.0				
						Depth to bedrock 20 to 40 "	0.5
Millsholm loam	\| 30	Poor		\| Poor		Poor	
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Slope >15\%	10.0
	\|	Thickest layer not a source		Thickest layer not a source	10.0	Depth to bedrock <20"	10.0
		due to fines or a thin layer	10.0			Content of rock fragments	$10.5$
Altamont silty clay-----	\| 15	Poor		\| Poor		Poor	
		Thickest layer not a source due to fines or a thin layer	10.0	\| Bottom layer not a source		Hard to reclaim	10.0
				Thickest layer not a source	10.0	Clay >40\%	10.0
			10.0			Slope >15\%	10.0
							\|
330:			1 \|				\|
Millsholm loam-	60	Poor		\| Poor		Poor	
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Slope >15\%	10.0
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Depth to bedrock <20"	10.0
			10.0			Content of rock fragments	10.5
Contra Costa loam	25	Poor		\| Poor		Poor	
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Clay >40\%	10.0
	\|	Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Slope >15\%	10.0
	\|		10.0			Depth to bedrock 20 to 401	10.5
331:			1 \|		\|		\|
Sehorn silty clay-------	35	\| Poor		\| Poor		Poor	
		Bottom layer not a source Thickest layer not a source due to fines or a thin layer	10.0	Bottom layer not a source Thickest layer not a source	10.0	Clay >40\%	10.0
					10.0	Slope $>15 \%$	10.0
			10.0			Depth to bedrock 20 to 40 "	10.5

Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	$\left\lvert\, \begin{aligned} & \mid \\ & \mid \text { Pct. } \end{aligned}\right.$	Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil		
		Rating class and	\|Value		Rating class and	\|Value	Rating class and	\|Value
		limiting features		limiting features		limiting features		
			1					
			\|		\|	\|		
520, 521:								
Stonyford gravelly loam----------\|	65	Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Content of rock fragments	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Slope $>15 \%$	10.0	
		due to fines or a thin layer				Depth to bedrock <20"	0.0	
					\|	Clay 27 to $40 \%$	0.9	
Guenoc loam	15	\| Poor		\| Poor		\| Poor		
			10.0	Bottom layer not a source		\| Clay >40\%		
		Thickest layer not a source		Thickest layer not a source	$10.0$	Slope >15\%	$10.0$	
		due to fines or a thin layer	10.0			\| Depth to bedrock 20 to 40"	$10.5$	
						Content of rock fragments	$0.9$	
					1			
Arand, frequently flooded---------- \|	65	Poor		\|Fair		\| Poor		
		Bottom layer not a source   Thickest layer not a source	10.0	Bottom layer not a source	10.0	\| Content of rock fragments	0.0	
				Thickest layer a possible source	10.1	Hard to reclaim	0.0	
		due to fines or a thin layer	10.0					
Riverwash------------------------\|	25	Poor		\| Fair		\| Poor		
			10.0		10.1	\| Wetness >3' depth		
		Thickest layer not a source due to fines or a thin layer	\|		Bottom layer a possible source	10.1	Content of rock fragments	10.9
			10.0					
					\|			
526:								
Etsel gravelly sandy loam--------\|	30	Poor		\| Poor		\|Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	\| Slope >15\%	10.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Content of rock fragments	10.0	
						Depth to bedrock <20"	0.0	
					$\mid$ \|			
Maymen sandy loam----------------\|	30	Poor		$\mid$ Poor		\| Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Content of rock fragments	0.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Slope >15\%	10.0	
		due to fines or a thin layer	10.0			Depth to bedrock <20"	0.0	
Marpa very gravelly sandy loam----\|	20	\| Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0		10.0	Slope >15\%	10.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Content of rock fragments	10.0	
			10.0			Depth to bedrock 20 to 401	10.5	
						Clay 27 to $40 \%$	10.9	
					\|			
$527 \text { : }$			1		\|			
Maymen sandy loam----------------\|	35	\| Poor		\| Poor		Poor		
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	\| Content of rock fragments	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Slope >15\%	10.0	
		due to fines or a thin layer	10.0			Depth to bedrock <20"	10.0	

Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	\|Pct.	\| Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil		
		Rating class and	\|Value		Rating class and	\| Value	Rating class and	\|Value
		limiting features		limiting features		limiting features		
	1		1					
			1 \|		\|			
527:								
Etsel gravelly sandy loam-----	\| 30	\| Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	Slope >15\%	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	10.0	
		due to fines or a thin layer				Depth to bedrock <20"	0.0	
Speaker gravelly loa	20	\| Poor		\| Poor		\| Poor		
		Thickest layer not a source	10.0	\| Bottom layer not a source	10.0	Slope >15\%	0.0	
				Thickest layer not a source	10.0	Content of rock fragments	10.3	
		due to fines or a thin layer	10.0			Depth to bedrock 20 to 401	0.5	
					1			
528 :								
Maymen sandy loam	35	\| Poor		\| Poor		Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	\| Content of rock fragments	10.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Slope >15\%	10.0	
						Depth to bedrock <20"	10.0	
Etsel gravelly sandy loam	25	\| Poor		\| Poor		\| Poor		
		Bottom layer not a source		\| Bottom layer not a source	10.0	Slope $>15 \%$	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	$10.0$	
		due to fines or a thin layer				Depth to bedrock <20"		
Snook gravelly sandy loam-----	25	\| Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Slope >15\%	0.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	0.0	
		due to fines or a thin layer	10.0		,	Depth to bedrock <20"	0.0	
529 :					I			
Maymen sandy loam-------------	35	\| Poor		\| Poor		\| Poor		
		\| Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	\| Content of rock fragments	10.0	
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Slope >15\%	10.0	
			10.0			Depth to bedrock <20"	0.0	
Etsel gravelly sandy loam	30	Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Slope >15\%	10.0	
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	$10.0$	
		due to fines or a thin layer	10.0			Depth to bedrock <20"	10.0	
						Depth to bedrock <20		
Mayacama gravelly coarse sandy			1 \|		1			
loam----------------------	20	\| Poor		\| Poor		\| Poor		
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	\| Content of rock fragments	10.0	
	\|		Thickest layer not a source		Thickest layer not a source	10.0	Slope >15\%	10.0
		due to fines or a thin layer	10.0			Depth to bedrock 20 to 40 "	0.5	
			$\mid$					

Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	\|Pct.		\| Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil		
		Rating class and	\|Value		Rating class and	\|Value	Rating class and	\|Value	
		limiting features		limiting features		limiting features			
	1	\|		\|		$\mid \longrightarrow$			
					\|				
557 :									
	35	\| Fair		\| Poor		Poor			
		Bottom layer not a source Thickest layer possible source\|	0.0		10.0	Content of rock fragments	0.0		
			0.1	Thickest layer not a source	10.0	Slope >15\%	0.0		
						Depth to bedrock 20 to 40 "	0.5		
Bamtush very gravelly loam-------\|	30	\| Fair		\| Poor		\| Poor			
		Bottom layer not a source		\| Bottom layer not a source		Slope >15\%	10.0		
		Thickest layer possible source		Thickest layer not a source	$10.0$	Hard to reclaim	$10.0$		
						Content of rock fragments	0.0		
Speaker gravelly loam	20	\| Poor		\| Poor		\| Poor			
		Bottom layer not a source	0.0	\| Bottom layer not a source	10.0	Slope >15\%	10.0		
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	10.3		
		due to fines or a thin layer	0.0			Depth to bedrock 20 to 401	10.5		
564:							\|		
Fouts gravelly loam	35	Poor		\| Poor		\| Poor	1		
		Bottom layer not a source	0.0	\| Bottom layer not a source	10.0	\| Slope >15\%	10.0		
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Content of rock fragments	10.0		
			0.0			Clay >40\%	10.0		
						Depth to bedrock 20 to 401	10.5		
Yorkville clay loam-	35	\| Poor		\| Poor		\| Poor			
		Bottom layer not a source	0.0	\| Bottom layer not a source	10.0	\| Clay >40\%	10.0		
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Slope >15\%	10.0		
			0.0						
Squawrock gravelly loam----------\|	15	\| Poor		\| Poor		Poor			
		Bottom layer not a source	0.0	Bottom layer not a source	10.0	Slope >15\%	10.0		
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Content of rock fragments	10.0		
			0.0			Depth to bedrock 20 to 401	10.5		
						Clay 27 to $40 \%$	10.8		
				\|					
570 :									
Endoaquolls, frequently ponded---\|	90	\| Poor		\| Poor		\| Poor			
		Bottom layer not a source	0.0	Bottom layer not a source	10.0	Wetness >3' depth	10.0		
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0		10.7		
			0.0			Hard to reclaim	10.9		
590: \|			\|			\|	\|		\|
Neuns very gravelly loam---------\|	35	Fair				\| Poor			
		Bottom layer not a source	0.0		10.0	Content of rock fragments	10.0		
		Thickest layer possible source\|			10.0	Slope >15\%	10.0		
						Depth to bedrock 20 to 401	10.5		

Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued


Table 18.--Construction Materials (Part 1)--Continued

Map symbol and soil name	$\mid \text { Pct. } \mid$	Potential as a source of gravel		Potential as a source of sand		Potential as a source of topsoil				
		Rating class and	\| Value $\mid$	Rating class and	\|Value $\mid$	Rating class and	\|Value			
		limiting features		limiting features		limiting features				
600: \|										
Yollabolly very gravelly loam----\|	35	\| Poor		\| Poor				\| Poor		
		Bottom layer not a source		\| Bottom layer not a source		Depth to bedrock <20" Slope $>15 \%$	0.0			
		Thickest layer not a source		Thickest layer not a source	10.0		0.0			
		due to fines or a thin layer	10.0			Content of rock fragments	0.0			
610: \|										
Neuns very gravelly loam---------\|	40	\| Fair		\| Poor		\| Poor				
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	\| Content of rock fragments	10.0			
		Thickest layer possible source\|	10.1	Thickest layer not a source	10.0		10.0			
						Depth to bedrock 20 to $40 "$	10.5			
Bamtush very gravelly loam-------\|	25	\| Fair		\| Poor		\| Poor				
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Slope >15\%	10.0			
		Thickest layer possible source\|	10.2	Thickest layer not a source	10.0	Hard to reclaim	10.0			
						Content of rock fragments	10.0			
Goulding gravelly loam-	20	\| Poor		\| Poor		\| Poor				
		Bottom layer not a source	10.0	\| Bottom layer not a source		Depth to bedrock <20"				
		Thickest layer not a source due to fines or a thin layer		Thickest layer not a source	10.0	Slope $>15 \%$	10.0			
			10.0			Content of rock fragments	10.0			
650, 651:										
Bamtush very gravelly loam-------\|	55	\|Fair		\| Poor		Poor				
		Bottom layer not a source	10.0	\| Bottom layer not a source	10.0	- Slope >15\%	10.0			
		Thickest layer possible source\|	10.2	Thickest layer not a source	10.0	Content of rock fragments	10.0			
							10.0			
Marpa very gravelly sandy loam----	30	\| Poor		\| Poor		Poor				
		Bottom layer not a source	10.0	Bottom layer not a source	10.0	Slope >15\%	0.0			
		Thickest layer not a source		Thickest layer not a source	10.0	Content of rock fragments	10.0			
		due to fines or a thin layer	10.0			Depth to bedrock 20 to 40 "	10.5			
						Clay 27 to $40 \%$	10.9			

(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The closer the value is to 0.00 , the greater the potential limitation. Values of 0.00 indicate absolute limitations based on the soil property criteria used to develop the interpretation. Values closer to 1.0 indicate lesser limitations. Features with a value of 1.00 have absolutely no limitation and are not shown in the table. Rating classes are determined by the most limiting value. Fine-earth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)


Table 19.--Construction Materials (Part 2)--Continued

Map symbol and soil name	Pct.	\|Potential as a source of   reclamation material		Potential as a source of roadfill		
	$\mid$ \|	Rating class and	\|Value		Rating class and	\| Value
		limiting features	\|		limiting features	
	1		1		1	
115, 116, 117, 118: Clear Lake clay---			,		I	
			I			
	90	\| Poor	I	oor	1	
		Clay >40\%	10.00	LEP >9	10.00	
		SAR from 4 to 13	10.90	AASHTO GI >8	10.00	
			1			
124, 125, 126:						
Moonbend silt loan	80	\|Fair	\|	oor		
		\| Clay 27 to $40 \%$	10.56	AASHTO GI >8	10.00	
		$\text { k factor . 10-. } 35$	$10.90$	LEP 3 to 9	$10.78$	
			\|			
127:			\|		\|	
Mallard clay loam	85			oor		
		\| Clay >40\%	10.00	AASHTO GI >8	10.00	
				LEP 3 to 9	10.57	
			\|			
128:		\|	\|			
Mallard loan	85	\| Good	\|	por		
			I	AASHTO GI >8	10.00	
			\|	LEP 3 to 9	10.59	
129:			\|			
Mallard clay loam, occasionallyflooded--------------------			\|		\|	
	85	\| Poor	I	oor	1	
		\| Clay >40\%	10.00	AASHTO GI >8	10.00	
				LEP 3 to 9	10.57	
	\|		\|			
130, 131, 133:						
Corbiere silt loam	85	\| Poor	I	oor		
		Clay >40\%	10.00	AASHTO GI >8	10.00	
		Maximum $\mathrm{pH}>8.5$	$10.00$	LEP 3 to 9	10.28	
	1	SAR from 4 to 13	10.40	Wetness from 1 to $3^{\prime}$	10.53	
		K factor . $10-.35$	10.90			
	\|	OM of . 5 to $1 \%$	10.98			
136:	\|		\|		\|	
Colusa loam	85	Poor		air		
		SAR >13	10.00	LEP 3 to 9	0.98	
		\| AWC <3" to 60" depth	10.00			
		\| Maximum $\mathrm{pH}>8.5$	10.00		\|	
	\|	\| pH of 4 to 5 to 40 " or <5 below	10.50		\|	
		$40 \text { " }$				
	1	K factor . 10-. 35	10.68		\|	
		EC 8 to 16 mmhos/cm	10.90		\|	
	\|	OM of . 5 to $1 \%$	10.97			
141:			\|		\|	
Myers clay	90		1			
		\| Clay >40\%	10.00	AASHTO GI >8	10.00	
			\|	LEP 3 to 9	10.25	
			\|		,	
144:			\|		\|	
Hillgate clay loam-	85	$\mid$ Fair	I	oor	1	
		AWC 3-6" to 60" depth	10.09	AASHTO GI $>8$	10.00	
	\|	Clay 27 to $40 \%$	10.76	LEP 3 to 9	10.75	
	\|	\|	\|		1	
145, 147:			\|		I	
Hillgate loam-	90	\|Fair	I	Poor	1	
	\|	\| AWC 3-6" to 60" depth	10.00 \|	AASHTO GI >8	10.00	
	\|	( OM of . 5 to $1 \%$	\| 0.08			,

Table 19.--Construction Materials (Part 2)--Continued


The interpretation for reclamation material evaluates the following soil properties at various depths in the soil: the content of sand, clay, and rock fragments; the Wind Erodibility Group (WEG); the available water capacity (AWC); soil pH; salinity (EC); amount of sodium (SAR); carbonates; and susceptibility of the soil to water erosion (K factor).

The interpretation for roadfill evaluates the following soil properties at various depths in the soil: shrink-swell potential expressed as linear extensibility percent (LEP), depth to bedrock or a cemented pan, wetness, slope, soil strength expressed as AASHTO Group Index Number (AASHTO GIN), and content of rock fragments.

## Table 20.--Water Management

(The information in this table is based on Pacific Southwest MLRA Office interpretations. It indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only the three highest value limitations are lisited. There may be more limitations. Fineearth fractions and rock fragments are reported on a weight basis. An explanation of the rating criteria and of the abbreviations used in describing the limitations is given at the end of the table.)


Table 20.--Water Management--Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas		
		Limitation	\|Value	\| Limitation	\| Value	
	I			1		
	\|	,	I	,	I	
127:		\|	1 \|		\|	
Mallard clay loam	85	\| Moderate		\|slight	\|	
		\| Shrink-swell (LEP 3-6)	10.50		\|	
		\| Wetness between 2 and 4'	10.46		\|	
	\|	\|	\|			I
128:		,	1 \|			
Mallard loam	85	\| Severe	\|		\|Moderate	
		\| Shrink-swell (LEP >6)	11.00	\| Permeability . 6-2"/hr (some seepage)	10.50	
		\| MH or CH Unified and PI <40\%	10.50			
		\| Wetness between 2 and 4'	10.46			
129 :			1 \|			
Mallard clay loam, occasionally			1 \|			
flooded---------------------	85	\|Moderate	1 \|	\| Slight		
		\| Shrink-swell (LEP 3-6)	10.50			
		\| Wetness between 2 and 4'	10.46		\|	
			,	\|		
130, 131, 133:Corbiere silt loan		\|	1 \|			
	85	\| Severe	\|		\| Moderate	
Corbiere silt loa		\| Shrink-swell (LEP >6)		\| Permeability .6-2"/hr (some seepage)	0.50	
		\| Wetness <2' depth	$1.00$			
		\| MH or CH Unified and PI <40\%	10.50			
136:		\|	1 \|			
Colusa loam	85	\| Severe	\|		\|Moderate	
		\| Thin layer	11.00	\| Permeability . 6-2"/hr (some seepage)	0.50	
		\| Very high piping potential	11.00			
		\| Shrink-swell (LEP 3-6)	10.18			
141:			\|			
Myers clay	90	\|Severe		\| Slight		
		\| Shrink-swell (LEP >6)	11.00			
		\| MH or CH Unified and PI $\geq 40 \%$	11.00			
144 :			1 \|			
Hillgate clay loam	85	\| Severe	1 \|	\| Slight		
		\| Thin layer	11.00			
		\| MH or CH Unified and PI <40\%	10.50			
		\| High piping potential	10.50			
145, 147:			1 \|			
Hillgate loam	90	\| Severe	\|		\| Moderate	
		\| MH or CH Unified and PI $\geq 40 \%$	11.00	\| Permeability .6-2"/hr (some seepage)	0.50	
		\| Thin layer	11.00			
		\| High piping potential	10.18			
	\|					
150:	1		1 \|			
Arbuckle sandy loam	85	\|Moderate	,	\| Severe		
		Shrink-swell (LEP 3-6)	10.50	\| Permeability >2"/hr (seepage)	11.00	
			,	\| Slopes 2 to $7 \%$	10.00	
	1		\|			
151:		$\mid$	\|		\|	
Arbuckle sandy loam-	50	\| Moderate	1	\| Severe		
		Shrink-swell (LEP 3-6)	10.50	\| Permeability >2"/hr (seepage)	11.00	
			,	\| Slopes 2 to 7\%	10.00	
			\|			
Hillgate loam-	40	\| Severe	\|	\| Moderate		
		\| MH or CH Unified and PI $\geq 40 \%$	11.00	\| Permeability . 6-2"/hr (some seepage)	10.50	
		\| Thin layer	11.00	\| Slopes 2 to $7 \%$	10.00	
		\| High piping potential	\|0.18			\|
	1	\|	1	1	1	



Table 20.--Water Management--Continued


Table 20.--Water Management--Continued


Table 20.--Water Management--Continued


Table 20.--Water Management--Continued

Map symbol and soil name		\| Embankments, dikes, and levees		Pond reservoir areas		
	\|	Limitation	\|Value	Limitation	\| Value	
		\|				
		\|	\|			
$300:$						
Contra Costa loam	50	\| Severe		\| Severe		
		\| Shrink-swell (LEP >6)	11.00	Slopes >7\%	11.00	
		\| Thin layer	$10.85$	Depth to bedrock from 20-60"	10.85	
		\| MH or CH Unified and PI <40\%	$10.50$			
Millsholm loam-	40	\| Severe		\| Severe		
		\| Thin layer	11.00	\| Slopes $>7 \%$	11.00	
		\| Very high piping potential	11.00	Depth to bedrock <20"	11.00	
				Permeability . $6-2 \mathrm{l} / \mathrm{hr}$ (some seepage)	10.50	
305, 311:		,				
Contra Costa loa	85	\| Severe		\| Severe		
		\| Shrink-swell (LEP >6)	11.00	Slopes $>7 \%$	11.00	
		\| Thin layer	$10.85$	\| Depth to bedrock from 20-60"	10.85	
		MH or CH Unified and PI <40\%	$10.50$	-		
312 :						
Saltcanyon loam	90	\|Moderate		\| Moderate		
		\| High piping potential	10.88	Permeability . $6-2 \mathrm{l} / \mathrm{hr}$ (some seepage)	10.50	
		\| Shrink-swell (LEP 3-6)	10.50	Slopes 2 to 7\%	10.00	
		,				
313 :						
Saltcanyon loam	90	\|Moderate		\| Moderate		
				\| Slopes 2 to 7\%	10.91	
		\| Shrink-swell (LEP 3-6)	10.50	\| Permeability . $6-2 \mathrm{~h} / \mathrm{hr}$ (some seepage)	$10.50$	
315 :			1			
Mallard clay loam	90					
		Shrink-swell (LEP 3-6)	10.50	\| Slopes 2 to 7\%	10.08	
316 :			1 \|			
Hillgate loam	90	\|Severe		\| Moderate		
		\| MH or CH Unified and PI $\geq 40 \%$	11.00	\| Slopes 2 to 7\%	10.91	
		\| Thin layer	$11.00$	Permeability . $6-2 \mathrm{~h} / \mathrm{hr}$ (some seepage)	10.50	
		\| High piping potential	10.18			
320 :						
Millsholm loam-	85			\| Severe		
		\| Thin layer	$11.00$	\| Depth to bedrock <20"	11.00	
		\| Very high piping potential	11.00	\| Slopes >7\%	11.00	
		\|		\| Permeability . $6-2 \mathrm{~h} / \mathrm{hr}$ (some seepage)	10.50	
		\|				
329 :						
Sehorn silty clay------	\| 40	\| Severe		\| Severe		
		\| Shrink-swell (LEP >6)	11.00	\| Slopes >7\%	11.00	
		\| Thin layer	$10.85$	\| Depth to bedrock from 20-60"	10.85	
		\| MH or CH Unified and PI <40\%	10.50			
Millsholm loam-	30					
		\| Thin layer	11.00	Slopes >7\%	11.00	
		\| Very high piping potential	11.00	Depth to bedrock <20"	11.00	
				\| Permeability . $6-2 \mathrm{l} / \mathrm{hr}$ (some seepage)	10.50	
Altamont silty clay-	15	\| Severe		\| Severe		
		\| Shrink-swell (LEP >6)	11.00	\| Slopes >7\%	11.00	
		\| MH or CH Unified and PI <40\%	$10.50$	\| Depth to bedrock from 20-60"	10.11	
		Thin layer	$\mid 0.11$			

Table 20.--Water Management--Continued


Table 20.--Water Management--Continued


Table 20.--Water Management--Continued


Table 20.--Water Management--Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas		
		Limitation	\| Value		Limitation	\|Value
527 :						
Speaker gravelly loam------------\|	20	\|Moderate		Severe		
		Thin layer	10.86	\| Slopes >7\%	11.00	
		High piping potential	$10.50$	\| Depth to bedrock from 20-60"	10.86	
		Shrink-swell (LEP 3-6)	10.50			
					\|	
528: \|					\|	
Maymen sandy loam-----------------	35	Severe		Severe	\|	
		\| Thin layer	11.00	Slopes $>7 \%$	11.00	
				\| Depth to bedrock <20"	11.00	
				\| Permeability $>2 \mathrm{k} / \mathrm{hr}$ (seepage)	11.00	
Etsel gravelly sandy loam---------\|	25	\|Severe		Severe		
		\| Thin layer	11.00	Slopes >7\%	1.00	
				Depth to bedrock <20"	11.00	
Snook gravelly sandy loam	25	\| Severe		Severe		
		Thin layer	11.00	\| Slopes >7\%	11.00	
				Depth to bedrock <20"	\|1.00	
529:					\|	
Maymen sandy loam-	35	\|Severe\| Thin layer		Severe		
			11.00	Slopes >7\%	11.00	
				Depth to bedrock <20"	\|1.00	
				Permeability $>2 \mathrm{k} / \mathrm{hr}$ (seepage)	\| 1.00	
Etsel gravelly sandy loam--------\|	30	\|Severe		Severe		
		Thin layer	11.00		1.00	
				Depth to bedrock <20"	11.00	
Mayacama gravelly coarse sandy					\|	
loam--------------------------\|	20			Severe		
		\| Thin layer	11.00	\| Slopes >7\%	11.00	
				\| Permeability >2"/hr (seepage)	11.00	
				\| Depth to bedrock from 20-60"	10.85	
542 :		\|				
Okiota loam----------------------\|	35	\| Severe		Severe		
		\| Shrink-swell (LEP >6)	11.00	Slopes >7\%	1.00	
			11.00	Depth to bedrock <20"	11.00	
		MH or CH Unified and PI <40\%	10.50			
					\|	
Dubakella gravelly clay loam-----\|	25	\| Severe		Severe	\|	
		Shrink-swell (LEP >6)	11.00	\| Slopes >7\%	11.00	
		Thin layer	10.86	Depth to bedrock from 20-60"	10.86	
Henneke sandy loam--------------- \|	25	\|Severe		Severe		
		\| Shrink-swell (LEP >6)	11.00	Slopes >7\%	11.00	
		Thin layer	11.00	Depth to bedrock <20"	11.00	
					,	
545:	40				\|	
Henneke sandy loam---------------\|		Severe		Severe	\|	
	40	\| Shrink-swell (LEP >6)	11.00	Slopes >7\%	11.00	
		Thin layer	11.00	\| Depth to bedrock <20"	11.00	
					\|	
Montara gravelly sandy loam------- \|	30	\| Severe		Severe	\|	
		\| Thin layer	11.00	Slopes >7\%	11.00	
				Depth to bedrock <20"	11.00	
			1		\|	
Rock outcrop---------------------- \|	15	\| Not rated	1	\| Not rated		

Table 20.--Water Management--Continued



Table 20.--Water Management--Continued


The interpretation for embankments, dikes, and levees evaluates the following soil properties at various depths in the soil: ponding; wetness; depth to a restrictive layer; rock fragments more than 3 inches in size; salinity (EC); Unified classes for a high content of organic matter (PT, OL, and OH) ; Unified classes that are hard to pack (MH and CH); permeability that is too rapid, allowing seepage; piping as determined by Atterberg limits of liquid limit (LL) and plasticity index (PI); sodium content (SAR); and gypsum content.

The interpretation for pond reservoir areas evaluates the following soil properties at various depths in the soil: slope, depth to hard or soft bedrock, depth to a cemented pan, marly textures, gypsum content, and permeability that is too rapid, allowing seepage.

## Soil Properties

Data relating to soil properties are collected during the course of the soil survey. The data and the estimates of soil and water features, listed in tables, are explained on the following pages.

Soil properties are determined by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features .

## Engineering Index Properties

Table 21 gives estimates of the engineering classification and of the range of index properties for the major layers of each soil in the survey area. Most soils have layers of contrasting properties within the upper 5 or 6 feet.

Depth to the upper and lower boundaries of each layer is indicated. The range in depth and information on other properties of each layer are given for each soil series under the heading "Soil Series and Their Morphology."

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is as much as about 15 percent, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to
the Unified soil classification system (ASTM, 2001) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2000).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to grain-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC ; silty and clayey soils as ML, CL, OL, MH, CH, and OH ; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of grain-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of $4.76,2.00,0.420$, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of grain-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is omitted in the table.

## Physical and Chemical Properties

Table 22 shows estimates of some physical properties and features that affect soil behavior. These estimates are given for the major layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each major soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay greatly affect the fertility and physical condition of the soil. They determine the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$-bar moisture tension. Weight is determined after the soil is dried at 105 degrees C. In table 22, the estimated moist bulk density of each major soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. A bulk density of more than 1.6 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.
$K_{\text {sat }}$ or saturated hydraulic conductivity, also generally known as permeability, refers to the ability of a soil to transmit water or air. The estimates indicate the rate of downward movement of water when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each major soil layer. The capacity varies, depending on soil properties that affect the retention of water and the depth of the root zone. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Shrink-swell potential is the potential for volume change in a soil with a loss or gain in moisture. Volume change occurs mainly because of the interaction of clay minerals with water and varies with the amount and type of clay minerals in the soil. The size of the load on the soil and the magnitude of the change in soil moisture content influence the amount of swelling of soils in place. Laboratory measurements of swelling of undisturbed clods were made for many soils. For others, swelling was estimated on the basis of the kind and amount of clay minerals in the soil and on the basis of measurements of similar soils.

If the shrink-swell potential is rated moderate to very high, shrinking and swelling can cause damage to buildings, roads, and other structures. Special design is often needed.

Shrink-swell potential classes are based on the change in length of an unconfined clod as moisture content is increased from air-dry to field capacity. The classes are low, a change of less than 3 percent; moderate, 3 to 6 percent; high, 6 to 9 percent; and very high, greater than 9 percent.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 22 , the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained or increased by returning crop residue to the soil. Organic matter affects the available water capacity, infiltration rate, and tilth. It is a source of nitrogen and other nutrients for crops.

Table 23 shows estimates of some chemical properties and features that affect soil behavior. These estimates are given for the major layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Cation-exchange capacity is the amount of exchangable cations that a soil can adsorb. The
cations are adsorbed primarily in the clay fraction of the soil. Soils vary in their ability to adsorb cations. The type and amount of clay and the content of organic matter affect the cation-exchange capacity. Estimates of cation-exchange capacity are based on laboratory analyses of selected soils with ammonium acetate at pH 7 and are given in units of milliequivalents per 100 grams of soil ( $\mathrm{meg} / 100 \mathrm{~g}$ ). Soils with a relatively high cation-exchange capacity are generally better at supplying cations for plant growth than other soils.

Soil reaction is a measure of acidity or alkalinity and is expressed as a range in pH values. The range in pH of each major horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate is given in table 23 as the percent, by weight, of the fine-earth fraction (less than 2 millimeters) consisting of $\mathrm{CaCO}_{3}$. Carbonates have an effect on soil pH , which is related to the availability of plant nutrients. Carbonates in soils are deposited by floodwater and ground water and by the wind in arid regions and developed from highly calcareous parent materials.

Gypsum is expressed a percent, by weight, of hydrated calcium sulfates in the fraction of the soil less than 20 millimeters in size. Soils with more than 1 percent gypsum are corrosive to concrete. Gypsum is readily soluable but may be difficult to remove from soils with poor drainage.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees C. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Sodium adsorption ratio (SAR) is a measure of the amount of sodium ( Na ) relative to calcium ( Ca ) and magnesium $(\mathrm{Mg})$ in the water extract from a saturated soil paste. Soils with an SAR of more than 13 may be characterized by reduced permeability (resulting from the dispersion of clay), deterioration of soil structure, and a marked increase in soil pH with a resultant decrease in the availability of some plant nutrients.

Erosion factors are shown in table 24 as the K
factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor $K f$ indicates the erodibility of the fineearth fraction, or the material less than 2 millimeters in size (USDA, 1978).

Erosion factor $T$ is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are as follows:

1. Coarse sands, sands, fine sands, and very fine sands.
2. Loamy coarse sands, loamy sands, loamy fine sands, loamy very fine sands, ash material, and sapric soil material.
3. Coarse sandy loams, sandy loams, fine sandy loams, and very fine sandy loams.

4L. Calcareous loams, silt loams, clay loams, and silty clay loams.
4. Clays, silty clays, noncalcareous clay loams, and silty clay loams that are more than 35 percent clay.
5. Noncalcareous loams and silt loams that are less than 20 percent clay and sandy clay loams, sandy clays, and hemic soil material.
6. Noncalcareous loams and silt loams that are more than 20 percent clay and noncalcareous clay loams that are less than 35 percent clay.
7. Silts, noncalcareous silty clay loams that are less than 35 percent clay, and fibric soil material.
8. Soils that are not subject to wind erosion because of rock fragments on the surface or because of surface wetness.

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between
wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

## Soil Features

Table 25 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The hardness and thickness of the restrictive layer significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

## Water Features

Table 26 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from longduration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The months in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 26 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at
selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 26 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

## Physical and Chemical Analyses of Selected Soils

The results of physical analyses of several typical pedons in the survey area are given in table 27 and the results of chemical analyses in table 28. The data are for soils sampled at carefully selected sites. Unless otherwise indicated, the pedons are typical of the series. They are described in the section "Soil Series and Their Morphology." Soil samples were analyzed by National Soil Survey Laboratory, Lincoln, Nebraska.

Most determinations, except those for grain-size analysis and bulk density, were made on soil material smaller than 2 millimeters in diameter. Measurements reported as percent or quantity of unit weight were calculated on an ovendry basis. The methods used in obtaining the data are indicated in the list that follows. The codes in parentheses refer to published methods (USDA, 1996).

Sand-(0.05-2.0 mm fraction) weight percentages of material less than 2 mm (3A1).
Silt-(0.002-0.05 mm fraction) pipette extraction, weight percentages of all material less than 2 mm (3A1).
Clay-(fraction less than 0.002 mm ) pipette extraction, weight percentages of material less than 2 mm (3A1).
Water retained-pressure extraction, percentage of ovendry weight of less than 2 mm material; $1 / 3$ or $1 / 10$ bar (4B1), 15 bars (4B2).
Bulk density-of less than 2 mm material, sarancoated clods field moist (4A1a), $1 / 3$ bar (4A1d), ovendry (4A1h).
Linear extensibility (LEP)—change in clod dimension based on whole soil (4D).
Organic carbon-wet combustion. Walkley-Black modified acid-dichromate, ferric sulfate titration (6A1c).
Organic carbon-dry combustion (6A2d).
Cation-exchange capacity (CEC)-ammonium acetate, pH 7.0, steam distillation (5A8b).
Reaction ( pH )-1:1 water dilution (8C1f).
Soil resistivity—saturated paste (8E1).

Carbonate as calcium carbonate-(fraction less than 2 mm ) manometric ( 6 E 1 g ).

Electrical conductivity (EC)—saturation extract (8A3a). Sodium adsorption ratio (SAR)-(5E).

Table 21.--Engineering Index Properties
(Absence of an entry indicates that the data were not estimated.)


Table 21.--Engineering Index Properties--Continued


Table 21.--Engineering Index Properties-Continued


Table 21.--Engineering Index Properties--Continued


Table 21.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \| Liquid } \\ & \mid \text { limit } \end{aligned}$	Plas-   ticity   index		
			Unified	AASHTO	>10	3-10								
					\|inches		inches	4	10	40	200			
$524 \text { : }$   Arand		$\mid$ \|	\|	\|		Pct	Pct		\|			Pct		
		\|			\|				\|					
		$\mid$ \|		\|				\|						
	0-8	\|Very gravelly	\|SC-SM	\|A-1, A-2	0	0	\| 60-85	\| 55-85	\| 35-55	15-30	15-25	NP-5		
		\| sandy loam												
	8-18	\|Very gravelly	\|SC-SM	\|A-1, A-2	0	0	\| 60-85	\| 55-85	\| 35-55	15-30	15-25	NP-5		
		\| sandy loam												
	18-24	\|Very gravelly	\|SC-SM	\|A-1, A-2	0	0	\| 60-85	\| 55-85	\| 35-55	\|15-30	15-25	NP-5		
		\| sandy loam												
	24-65	\|Extremely	\|SC-SM	\| A-1	0	0	\| 45-65	\|40-65	\|25-45	5-20	10-20	NP-5		
		gravelly loamy		\|										
		\| sand, very		\|										
		\| gravelly sand		\|										
				$\mid$										
Riverwash-------\|	0-3	\| Sandy loam	\| SM	\|A-2, A-4	10	0	\| 90-100		\| 90-100		\|50-80	\|30-45	0-10	NP
	3-60	\|Stratified	\| SM, GM	\|A-1, A-2	0	0	\| 80-95	\| 80-95	\| 45-70	\|20-35	0-10	NP		
		\| gravelly												
		\| coarse sand to			\|									
		\| loam		1 \|										
				,										
526:	0-3	\|												
Etsel----------\|		\| Gravelly sandy	\|GC-GM, SC,	\| A-2	0	0-5	\| 55-80	\| 50-75	\| $40-70$	\|25-50	20-30	5-10		
		\| loam	\| GC, SC-SM											
	3-10	\| Very gravelly	\|GC, GC-GM	\|A-1, A-2	0	0-5	\| 35-55	\|30-50	\|20-45	\|15-35	20-30	5-10		
		\| loam, very												
		\| gravelly sandy							\|					
		\| loam												
	>10	\| Unweathered	\| ---	-	---	---	---	---	---	---	---	---		
		\| bedrock												
Maymen---------- \|	0-3	\| Sandy loam	\| CL-ML, SC,	\|A-4, A-6	0	0-5	\| 80-95	\| 75-95	\| 55-85	\|40-70	20-35	5-15		
			\| CL, SC-SM											
	3-16	\| Gravelly sandy	\|GC-GM, GC,	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	0-5	\| 60-80	\| 50-75	\| 30-60	\|25-50	20-35	5-15		
		\| loam	\| SC, SC-SM											
	>16	\| Unweathered	-	-	-	---	---	---	---	---	---	---		
		\| bedrock												
				,										
Marpa----------- \|	0-2	\| Moderately	\| PT	\|A-8	0	0	---	---	---	---	0-0	NP		
		decomposed		\|										
		\| plant material												
	2-5	\| Very gravelly	\| GM	\|A-1, A-2	0	0-5	\| 30-55	\|25-50	15-35	\|10-20	25-35	NP-10		
		\| sandy loam												
	5-14	\|Very gravelly	\| GC	\|A-2, A-6	0	5-10	\| 30-55	\|25-50	\|20-45	\|10-40	30-40	10-15		
		\| clay loam,												
		\| very gravelly		\|					\|					
		\| sandy clay		,				\|						
		\| loam												
	14-25	\| Very gravelly	\| GC	A-2, A-6	0	5-10	130-55	\|25-50	\|20-45	\|10-40	30-40	10-15		
		\| clay loam,		,										
		\| very gravelly		\|				1	\|					
		\| sandy clay		\|		1		1	\|					
		\| loam												
	>25	\| Unweathered	-	\| ---	---	---	---	\| ---	---	---	---	---		
		\| bedrock		\|				,						
				\|				\|						
527 :		$\mid$ \|		\|										
Maymen--------\|	0-3	\| Sandy loam	\| CL, SC-SM,	\|A-4, A-6	10	0-5	\| 80-95	\| 75-95	\| 55-85	\|40-70	20-35	5-15		
			\| CL-ML, SC											
	3-16	\| Gravelly sandy	\|GC, SC-SM,	$\|A-2, A-4, A-6\|$	0	0-5	160-80	\| 50-75	\| 30-60	\|25-50	20-35	5-15		
		\| loam	\| GC-GM, SC	\|										
	>16	\| Unweathered	---	\| ---	--- \|	---	--- \|	\| ---	---	---	---	---		
		\| bedrock		\|	$\mid$ \|									

Table 21.--Engineering Index Properties--Continued


Table 22.--Physical Properties of the Soils
(Soil properties are measured or inferred from direct observations in the field or laboratory.)


Table 22.--Physical Properties of the Soils--Continued


Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{gathered} \text { Shrink- } \\ \text { swell } \\ \mid \text { potential } \mid \end{gathered}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
$\begin{gathered} \text { 130, 131, 133: } \\ \text { Corbiere----- } \end{gathered}$							
	0-6	20-27	1.45-1.60	4.00-14.00	0.15-0.20	3.0-6.0	1.0-2.0
	6-13	20-27	1.45-1.60	4.00-14.00	0.15-0.20	3.0-6.0	1.0-2.0
	13-21	27-35	1.35-1.45	1.40-4.00	0.17-0.21	3.0-6.0	1.0-2.0
	21-33	35-55	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	33-46	35-55	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	46-59	35-55	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	59-73	35-55	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	73-94	40-70	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.2-0.5
	94-114\|	40-70	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.2-0.5
136 :							
Colusa--------	0-2	12-15	1.50-1.70	4.00-14.00	0.14-0.18	0.0-3.0	0.5-2.0
	2-9	14-20	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-0.5
	9-19	14-20	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-0.5
	19-25	14-20	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-0.5
	25-35	14-20	1.40-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-0.5
	35-52	14-20	1.40-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-0.5
	52-64	10-14	1.45-1.55	4.00-14.00	0.13-0.15	0.0-3.0	0.0-0.5
	64-79	10-14	1.45-1.55	4.00-14.00	0.13-0.15	0.0-3.0	0.0-0.5
141:							
Myers---------	0-3	40-60	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.5-2.0
	3-25	40-60	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.5-2.0
	25-43	40-60	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.2-0.5
	43-56	40-60	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.2-0.5
	56-71	30-40	1.30-1.45	0.42-1.40	0.15-0.18	6.0-9.0	0.2-0.5
144 :							
Hillgate------	0-10	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.5-2.0
	10-19	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.5-2.0
	19-50	40-50	1.30-1.40	0.42-1.00	0.14-0.16	6.0-9.0	0.0-0.5
	50-60	27-40	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
145, 147:							
Hillgate------	0-3	15-27	1.35-1.60	4.00-14.00	0.14-0.17	0.0-3.0	0.5-4.0
	3-11	15-27	1.35-1.60	4.00-14.00	0.14-0.17	0.0-3.0	0.5-2.0
	11-19	15-27	1.35-1.70	4.00-14.00	0.14-0.17	0.0-3.0	0.1-0.5
	19-37	40-50	1.30-1.60	0.42-1.40	0.14-0.16	6.0-9.0	0.1-0.5
	37-52	27-40	1.30-1.60	1.40-4.00	0.17-0.21	6.0-9.0	0.1-0.5
	52-62	27-40	1.30-1.60	1.40-4.00	0.17-0.21	6.0-9.0	0.1-0.5
	62-72	27-40	1.30-1.60	1.40-4.00	0.17-0.21	3.0-6.0	0.1-0.5
150:							
Arbuckle------	0-4	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	4-10	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	10-17	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.0-0.5
	17-26	10-18	1.50-1.60	14.00-42.00	0.08-0.10	0.0-3.0	0.0-0.5
	26-34	18-32	1.45-1.55	1.40-4.00	0.09-0.12	3.0-6.0	0.0-0.5
	34-44	18-32	1.45-1.55	1.40-4.00	0.09-0.12	3.0-6.0	0.0-0.5
	44-68	5-25	1.45-1.55	1.40-4.00	0.07-0.09	3.0-6.0	0.0-0.5
151:							
Arbuckle------	0-4	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	4-10	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	10-17	10-18	1.50-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.0-0.5
	17-26	10-18	1.50-1.60	14.00-42.00	0.08-0.10	0.0-3.0	0.0-0.5
	26-34	18-32	1.45-1.55	1.40-4.00	0.09-0.12	3.0-6.0	0.0-0.5
	34-44	18-32	1.45-1.55	1.40-4.00	0.09-0.12	3.0-6.0	0.0-0.5
	44-68	5-25	1.45-1.55	1.40-4.00	0.07-0.09	3.0-6.0	0.0-0.5

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{array}{c\|} \text { Shrink }-\mid \\ \text { swell } \\ \mid \text { potential } \end{array}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
151:							
Hillgate------	0-3	15-27	1.35-1.60	4.00-14.00	0.14-0.17	0.0-3.0	0.5-4.0
	3-11	15-27	1.35-1.60	4.00-14.00	0.14-0.17	0.0-3.0	0.5-2.0
	11-19	15-27	1.35-1.70	4.00-14.00	0.14-0.17	0.0-3.0	0.1-0.5
	19-37	40-50	1.30-1.60	0.42-1.40	0.14-0.16	6.0-9.0	0.1-0.5
	37-52	27-40	1.30-1.60	1.40-4.00	0.17-0.21	6.0-9.0	0.1-0.5
	52-62	27-40	1.30-1.60	1.40-4.00	0.17-0.21	6.0-9.0	0.1-0.5
	62-72	27-40	1.30-1.60	1.40-4.00	0.17-0.21	3.0-6.0	0.1-0.5
152:							
Arbuckle------	0-8	10-18	1.40-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-1.0
	8-29	27-40	1.50-1.60	1.40-4.00	0.11-0.14	3.0-6.0	0.0-0.5
	29-51	27-40	1.50-1.60	1.40-4.00	0.11-0.14	3.0-6.0	0.0-0.5
	51-60	27-35	1.50-1.65	1.40-4.00	0.07-0.09	0.0-3.0	0.0-0.5
155 :							
Alcapay-------	0-5	40-60	1.40-1.55	0.42-1.40	0.14-0.16	6.0-9.0	1.0-2.0
	5-10	40-60	1.40-1.55	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	10-24	40-60	1.40-1.55	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	24-35	40-60	1.40-1.55	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	35-53	40-60	1.45-1.60	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	53-64	40-60	1.45-1.60	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
160:							
Grandbend-----	0-16	17-26	1.40-1.50	4.00-14.00	0.14-0.18	3.0-6.0	1.0-2.0
	16-27	8-20	1.30-1.60	4.00-14.00	0.10-0.20	3.0-6.0	0.5-1.0
	27-44	8-20	1.30-1.60	4.00-14.00	0.10-0.20	3.0-6.0	0.5-1.0
	44-54	17-26	1.30-1.60	4.00-14.00	0.10-0.20	3.0-6.0	0.5-1.0
	54-64	30-45	1.30-1.40	1.40-4.00	0.14-0.21	6.0-9.0	0.5-1.0
	64-67	30-45	1.30-1.40	1.40-4.00	0.14-0.21	6.0-9.0	0.5-1.0
170, 171:							
Vina----------	$0-8$	14-20	$1.40-1.50$	$4.00-14.00$	0.13-0.18	$0.0-3.0$	$1.0-3.0$
	8-14	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	14-21	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	21-26	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
	26-46	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
	46-48	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
	48-60	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
172:							
Vina----------	0-15	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	15-25	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	25-42	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
	42-52	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
	52-60	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
174:							
Vina----------	0-8	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	8-14	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	14-21	14-20	1.40-1.50	4.00-14.00	0.13-0.18	0.0-3.0	1.0-3.0
	21-26	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
	26-46	12-18	1.45-1.55	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
	46-48	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
	48-60	12-18	1.45-1.60	4.00-14.00	0.10-0.20	0.0-3.0	0.0-1.0
175:							
Tujunga-------	0-10	15-25	1.40-1.60	4.00-14.00	0.14-0.17		
	10-17	0-5	1.60-1.70	42.00-141.0	0.03-0.06	0.0-3.0	0.0-0.0
	17-37	0-5	1.60-1.70	42.00-141.0	0.03-0.06	0.0-3.0	0.0-0.0
	37-62	0-5	1.60-1.70	42.00-141.0	0.03-0.06	0.0-3.0	0.0-0.0

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	Shrink-   swell   potential	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
176 :							
Columbia------	0-10	8-18	1.40-1.50	14.00-42.00	0.13-0.18	0.0-3.0	1.0-3.0
	10-14	8-18	1.45-1.55	14.00-42.00	0.13-0.18	0.0-3.0	1.0-3.0
	14-19	10-18	1.45-1.55	14.00-42.00	0.13-0.18	0.0-3.0	0.0-1.0
	19-33	10-18	1.45-1.60	14.00-42.00	0.13-0.18	0.0-3.0	0.0-1.0
	33-38	10-18	1.45-1.60	14.00-42.00	0.13-0.18	0.0-3.0	0.0-1.0
	38-68	10-18	1.45-1.60	4.00-14.00	0.13-0.18	0.0-3.0	0.0-1.0
177:							
Holillipah----	0-8	0-10	1.60-1.70	42.00-141.0	0.06-0.08	0.0-3.0	0.5-1.0
	8-32	0-10	1.60-1.70	42.00-141.0	0.05-0.08	0.0-3.0	0.0-0.5
	32-35	0-10	1.60-1.70	42.00-141.0	0.06-0.08	0.0-3.0	0.0-0.2
	35-47	0-10	1.45-1.60	14.00-42.00	0.10-0.13	0.0-3.0	0.0-0.2
	47-61	0-10	1.60-1.70	42.00-141.0	0.06-0.08	0.0-3.0	0.0-0.2
185:							
Riverwash-----	0-3	0-10	1.35-1.70	14.00-42.00	0.11-0.13	0.0-3.0	0.0-0.1
	3-60	3-10	1.35-1.70	14.00-42.00	0.07-0.09	0.0-3.0	0.0-0.1
187:							
Westfan-------	0-4	18-25	1.45-1.65	4.00-14.00	0.14-0.18	3.0-6.0	1.0-2.0
	4-14	18-25	1.45-1.60	4.00-14.00	0.14-0.18	0.0-3.0	1.0-2.0
	14-24	18-30	1.45-1.60	4.00-14.00	0.14-0.18	3.0-6.0	1.0-2.0
	24-33	12-25	1.50-1.70	14.00-42.00	0.13-0.15	0.0-3.0	0.5-1.0
	33-43	12-25	1.50-1.65	14.00-42.00	0.13-0.15	0.0-3.0	0.5-1.0
	43-56	12-25	1.50-1.65	14.00-42.00	0.13-0.15	0.0-3.0	0.0-1.0
	56-69	12-25	1.50-1.65	14.00-42.00	0.13-0.15	0.0-3.0	0.0-1.0
	69-93	23-40	1.40-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.0-1.0
	93-98	25-40	1.40-1.55	1.40-4.00	0.17-0.21	3.0-6.0	0.0-1.0
188:							
Westfan-------	0-15	18-27	1.45-1.60	4.00-14.00	0.13-0.17	3.0-6.0	1.0-2.0
	15-41	27-30	1.40-1.50	1.40-4.00	0.16-0.20	3.0-6.0	1.0-2.0
	41-60	40-50	1.35-1.45	0.42-1.40	0.13-0.14	6.0-9.0	0.5-1.0
189:							
Arand---------	0-8	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	8-18	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	18-24	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	24-65	5-10	1.50-1.60	14.00-42.00	0.02-0.03	0.0-3.0	0.0-0.5
190:							
Arand---------	0-10	12-27	1.45-1.55	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	10-32	12-27	1.45-1.55	4.00-14.00	0.05-0.06	0.0-3.0	0.2-0.5
	32-60	3-10	1.55-1.65	14.00-42.00	0.02-0.03	0.0-3.0	0.2-0.5
193:							
Westfan-------							
	4-20	18-27	1.45-1.60	4.00-14.00	0.11-0.14	3.0-6.0	1.0-2.0
	20-30	18-27	1.45-1.60	4.00-14.00	0.11-0.14	3.0-6.0	0.5-1.0
	30-60	18-27	1.45-1.60	4.00-14.00	0.11-0.14	3.0-6.0	0.5-1.0
200:							
Clear Lake----	0-4	40-60	1.00-1.45	0.42-1.40	0.14-0.16	6.0-9.0	1.0-4.0
	4-10	40-60	1.00-1.45	0.42-1.40	0.14-0.16	6.0-9.0	1.0-4.0
	10-20	40-60	1.00-1.45	0.42-1.40	0.14-0.16	9.0-12.0	1.0-4.0
	20-34	40-60	1.25-1.45	0.42-1.40	0.14-0.16	9.0-12.0	1.0-4.0
	34-47	40-60	1.25-1.45	0.42-1.40	0.14-0.16	9.0-12.0	1.0-4.0
	47-59	40-60	1.35-1.55	0.42-1.40	0.14-0.16	9.0-12.0	0.5-1.0
	59-79	40-60	1.35-1.55	0.42-1.40	0.14-0.16	9.0-12.0	0.5-1.0

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{gathered} \text { Shrink }-\mid \\ \text { swell } \\ \mid \text { potential } \end{gathered}\right.$	Organic matter	
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct	
204, 205, 206:								
	0-4	55-70	1.20-1.50	0.01-0.42	0.14-0.16	9.0-12.0	1.0-3.0	
	4-11	55-70	1.20-1.50	0.01-0.42	0.14-0.16	9.0-12.0	1.0-2.0	
	11-23	55-70	1.20-1.50	0.01-0.42	0.14-0.16	9.0-12.0	0.5-1.5	
	23-30	55-70	1.20-1.50	0.01-0.42	0.14-0.16	9.0-12.0	0.5-1.5	
	30-43	55-70	1.20-1.50	0.01-0.42	0.14-0.16	\| 12.0-15.0		0.5-1.5
	43-58	55-70	1.20-1.50	0.01-0.42	0.14-0.16	\|12.0-15.0		0.5-1.0
	58-74	55-70	1.20-1.50	0.01-0.42	0.14-0.16	\|12.0-15.0		0.2-1.0
	74-90	55-70	1.20-1.50	0.01-0.42	0.14-0.16	\|12.0-15.0		0.2-1.0
	90-102\|	55-70	1.20-1.50	0.01-0.42	0.14-0.16	\| 12.0-15.0		0.2-1.0
210:								
Corval--------	0-8	18-27	1.45-1.55	4.00-14.00	0.14-0.17	3.0-6.0	1.0-2.0	
	8-24	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	1.0-2.0	
	24-36	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.0-1.0	
	36-46	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.0-1.0	
	46-60	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.0-1.0	
	60-70	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.0-1.0	
211:								
Corval-------	0-10	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	1.0-2.0	
	10-50	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	1.0-2.0	
	50-60	27-35	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.0-1.0	
212, 213:								
Ayar---------	0-9	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0	
	$9-25$	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	25-36	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	36-46	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	46-58	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	58-72	35-50	1.40-1.50	1.40-4.00	0.14-0.21	6.0-9.0	0.5-1.0	
	>72	---		---	---	---	---	
215, 216:								
Altamont------	0-3	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0	
	3-9	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0	
	9-23	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0	0.5-1.0	
	23-35	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	35-43	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	43-49	35-60	1.25-1.50	0.42-1.40	0.14-0.17	3.0-9.0	0.5-1.0	
	>49		---		---	---	---	
Sehorn--------	0-5	40-55	1.25-1.45	0.42-1.40	0.14-0.17	\|2.0-15.0		1.0-3.0
	5-9	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0\|	1.0-3.0	
	9-19	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0	
	19-26	40-50	1.30-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.5-1.0	
	26-35	40-50	1.20-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.4-1.0	
	>35	---	---		---	---	---	
218:								
Sehorn--------	0-5	40-55	1.25-1.45	0.42-1.40	0.14-0.17	\|2.0-15.0		1.0-3.0
	5-9	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0\|	1.0-3.0	
	9-19	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0	
	19-26	40-50	1.30-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.5-1.0	
	26-35	40-50	1.20-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.4-1.0	
	>35	---	---	---	--	-	---	

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{gathered} \text { Shrink- } \\ \text { swell } \\ \mid \text { potential } \mid \end{gathered}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
218:							
Altamont------	0-3	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0
	3-9	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0
	9-23	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0
	23-35	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	35-43	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	43-49	35-60	1.25-1.50	0.42-1.40	0.14-0.17	3.0-9.0	0.5-1.0
	>49	---	---	---	---	---	---
220, 221:							
Altamont------	0-3	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0
	3-9	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0
	9-23	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0	0.5-1.0
	23-35	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	35-43	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	43-49	35-60	1.25-1.50	0.42-1.40	0.14-0.17	3.0-9.0	0.5-1.0
	>49			---	---	---	---
230 :							
Corning--------	0-4	27-40	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	0.5-1.0
	4-9	27-40	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	0.5-1.0
	9-20	35-60	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5
	20-31	35-60	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5
	31-39	27-35	1.50-1.60	1.40-4.00	0.10-0.17	3.0-6.0	0.0-0.5
	39-52	10-25	1.50-1.60	4.00-14.00	0.05-0.12	0.0-3.0	0.0-0.5
	52-60	10-25	1.50-1.60	4.00-14.00	0.03-0.07	0.0-3.0	0.0-0.5
232 :							
Maywood-------	0-16	12-18	1.45-1.60	4.00-14.00	0.11-0.14	0.0-3.0	0.5-1.0
	16-22	12-18	1.40-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	22-41	12-18	1.40-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	41-57	12-18	1.30-1.40	4.00-14.00	0.15-0.20	0.0-3.0	0.5-1.0
	57-60	12-18	1.35-1.45	14.00-42.00	0.13-0.15	0.0-3.0	1.0-2.0
233:							
Eastpark------	0-7	27-35	1.45-1.55	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.0
	7-15	27-40	1.40-1.50	1.40-4.00	0.15-0.18	3.0-6.0	1.0-1.0
	15-26	35-50	1.25-1.35	0.42-1.40	0.07-0.10	6.0-9.0	0.5-1.0
	26-45	27-35	1.30-1.40	1.40-4.00	0.05-0.08	3.0-6.0	0.5-1.0
	45-54	18-27	1.45-1.55	4.00-14.00	0.14-0.18	0.0-3.0	0.2-0.5
	54-60	20-30	1.55-1.65	1.40-4.00	0.03-0.04	3.0-6.0	0.2-0.5
241:							
Contra Costa--	0-3	20-27	1.45-1.55	4.00-14.00	0.14-0.18		0.5-1.0
	3-8	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
	8-16	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
	16-28	40-50	1.30-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5
	28-35	27-35	1.30-1.45	1.40-4.00	0.08-0.11	3.0-6.0	0.0-0.5
	>35	--	-		---	\| ---	---
Altamont------	0-3	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0
	3-9	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0
	9-23	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0	0.5-1.0
	23-35	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	35-43	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	43-49	35-60	1.25-1.50	0.42-1.40	0.14-0.17	3.0-9.0	0.5-1.0
	>49	---	---	---	--	--	---

Table 22.--Physical Properties of the Soils--Continued


Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\begin{array}{\|c} \text { Shrink- } \\ \text { swell } \\ \text { potential } \end{array}$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
270, 271:							
Ayar----------	0-9	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0
	9-25	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	25-36	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	36-46	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	46-58	40-50	1.35-1.45	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0
	58-72	35-50	1.40-1.50	1.40-4.00	0.14-0.21	6.0-9.0	0.5-1.0
	>72		---	---	---	---	---
275:							
Goldeagle-----	0-3	20-35	1.40-1.60	1.40-4.00	0.14-0.18	3.0-6.0	0.5-1.0
	3-9	35-45	1.30-1.50	1.40-4.00	0.14-0.16	6.0-9.0	0.2-0.5
	9-25	35-45	1.30-1.50	1.40-4.00	0.14-0.16	6.0-9.0	0.2-0.5
	25-33	35-45	1.30-1.50	1.40-4.00	0.14-0.16	6.0-9.0	0.2-0.5
	33-49	15-27	1.40-1.60	4.00-14.00	0.14-0.18	3.0-6.0	0.2-0.5
	49-59	15-27	1.40-1.60	4.00-14.00	0.14-0.18	3.0-6.0	0.2-0.5
	>59	---	---	---	---	---	---
Positas-------	0-2	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	2-9	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	9-21	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	21-34	40-60	1.35-1.55	0.42-1.40	0.07-0.12	6.0-9.0	0.2-0.5
	34-50	40-60	1.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
	50-62	40-60	1.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
	62-80	40-60	0.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
Balcom--------	0-2	10-17					
	2-11	10-17	1.45-1.55	4.00-14.00	0.15-0.20	0.0-3.0	0.2-1.0
	11-18	18-27	1.40-1.50	1.40-4.00	0.15-0.21	0.0-3.0	0.2-1.0
	18-33	18-27	1.40-1.50	4.00-14.00	0.15-0.20	0.0-3.0	0.2-1.0
	>33	---		.00-14.00	---	0.0	---
276:							
Positas------	0-2	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	2-9	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	9-21	10-20	1.50-1.70	14.00-42.00	0.09-0.11	0.0-3.0	0.7-2.0
	21-34	40-60	1.35-1.55	0.42-1.40	0.07-0.12	6.0-9.0	0.2-0.5
	34-50	40-60	1.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
	50-62	40-60	1.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
	62-80	40-60	0.40-1.60	0.42-1.40	0.05-0.09	6.0-9.0	0.2-0.5
280:							
Skyhigh-------	0-3	20-27	1.45-1.55	4.00-14.00	0.13-0.16	3.0-6.0	2.0-4.0
	3-8	27-35	1.40-1.50	1.40-4.00	0.14-0.17	3.0-6.0	0.2-0.5
	8-25	35-50	1.35-1.45	0.42-1.40	0.10-0.11	6.0-9.0	0.2-0.5
	25-37	27-35	1.40-1.50	1.40-4.00	0.12-0.15	3.0-6.0	0.2-0.5
	>37	---	---	---	---	---	---
Millsholm-----	0-2			4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5
	>14	-	---	---	---	---	---
300 :							
Contra Costa--	0-3	20-27	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.5-1.0
	3-8	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
	8-16	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
	16-28	40-50	1.30-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5
	28-35	27-35	1.30-1.45	1.40-4.00	0.08-0.11	3.0-6.0	0.0-0.5
	>35	---	---	---	---	---	---

Table 22.--Physical Properties of the Soils--Continued


Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{array}{c\|} \text { Shrink }- \\ \text { swell } \\ \mid \text { potential } \mid \end{array}\right.$	Organic matter	
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct	
329 :								
Altamont------	0-3	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	1.0-3.0	
	3-9	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0	
	9-23	35-60	1.25-1.50	0.42-1.40	0.14-0.17	9.0-12.0\|	0.5-1.0	
	23-35	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	35-43	35-60	1.25-1.50	0.42-1.40	0.14-0.17	6.0-9.0	0.5-1.0	
	43-49	35-60	1.25-1.50	0.42-1.40	0.14-0.17	3.0-9.0	0.5-1.0	
	>49	---	---	---	-	--	---	
330 :								
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5	
	>14	---	---	---	---	---	---	
Contra Costa---	0-3	20-27	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.5-1.0	
	3-8	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5	
	8-16	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5	
	16-28	40-50	1.30-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5	
	28-35	27-35	1.30-1.45	1.40-4.00	0.08-0.11	3.0-6.0	0.0-0.5	
	>35	27-35	---	---		.		
331:								
Sehorn--------	0-5	40-55	1.25-1.45	0.42-1.40	0.14-0.17	\|12.0-15.0		1.0-3.0
	5-9	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0\|	1.0-3.0	
	9-19	40-55	1.30-1.45	0.42-1.40	0.14-0.17	9.0-12.0	0.5-1.0	
	19-26	40-50	1.30-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.5-1.0	
	26-35	40-50	1.20-1.45	0.42-1.40	0.14-0.17	3.0-6.0	0.4-1.0	
	>35	---	---	---	---	---	---	
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5	
	>14			---	---		---	
Rock outcrop---	0-60		---	0.01-0.42	---	---	---	
332:								
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5	
	>14	-	---	---	-	---	---	
Rock outcrop---	0-60	---	---	0.01-0.42	-	---	---	
334:								
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0	
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5	
	>14	---	---	---	---	-	---	
Contra Costa--	0-3	20-27	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	0.5-1.0	
	3-8	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5	
	8-16	27-35	1.30-1.45	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5	
	16-28	40-50	1.30-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.0-0.5	
	28-35	27-35	1.30-1.45	1.40-4.00	0.08-0.11	3.0-6.0	0.0-0.5	
	>35	-	-	--	---	--	---	

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{gathered} \text { Shrink- } \\ \text { swell } \\ \mid \text { potential } \end{gathered}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
337:							
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5
	>14	-	---	---	---	---	---
Saltcanyon----	0-13	12-25	1.50-1.60	4.00-14.00	0.13-0.16	0.0-3.0	1.0-2.0
	13-25	18-30	$1.50-1.60$	4.00-14.00	0.14-0.21	3.0-6.0	0.5-1.0
	25-43	18-30	1.50-1.60	4.00-14.00	0.14-0.21	3.0-6.0	0.2-0.5
	43-61	18-30	1.50-1.60	4.00-14.00	0.14-0.21	3.0-6.0	0.2-0.5
345:							
Skyhigh-------	0-3	20-27	1.45-1.55	4.00-14.00	0.13-0.16	3.0-6.0	2.0-4.0
	3-8	27-35	1.40-1.50	1.40-4.00	0.14-0.17	3.0-6.0	0.2-0.5
	8-25	35-50	1.35-1.45	0.42-1.40	0.10-0.11	6.0-9.0	0.2-0.5
	25-37	27-35	1.40-1.50	1.40-4.00	0.12-0.15	3.0-6.0	0.2-0.5
	>37	---	---	---	---	--- \|	---
Sleeper--------	0-5	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	5-9	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	9-19	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	19-35	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	35-53	30-55	1.40-1.55	1.40-4.00	0.07-0.21	3.0-6.0	0.0-0.5
	>53	---	---	---	---	---	---
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5
	>14	18	1.	4.00-14.00	0.11-0.14	---	---
346:							
Skyhigh-------	0-3	20-27	1.45-1.55	4.00-14.00	0.13-0.16	$3.0-6.0$	2.0-4.0
	3-8	27-35	1.40-1.50	1.40-4.00	0.14-0.17	3.0-6.0	0.2-0.5
	8-25	35-50	1.35-1.45	0.42-1.40	0.10-0.11	6.0-9.0	0.2-0.5
	25-37	27-35	1.40-1.50	1.40-4.00	0.12-0.15	3.0-6.0	0.2-0.5
	>37					---	---
Millsholm-----							
	0-2	15-27	1.45-1. 1.50	4.00-14.00	0.14-0.18	$0.0-3.0$ $0.0-3.0$	0.5-1.0
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5
	>14	---	---	---	---	--	---
Sleeper-------	0-5	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	5-9	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	9-19	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	19-35	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	35-53	30-55	1.40-1.55	1.40-4.00	0.07-0.21	3.0-6.0	0.0-0.5
	>53	---	---	-	-	-	---
347, 348:							
Boar----------	0-5	15-26	1.40-1.50	4.00-14.00	0.14-0.18	3.0-6.0	1.0-1.5
	5-12	15-26	1.40-1.50	4.00-14.00	0.14-0.18	3.0-6.0	0.2-1.0
	12-20	35-45	1.35-1.45	0.42-4.00	0.14-0.21	6.0-9.0	0.0-0.5
	20-37	35-45	1.35-1.45	0.42-4.00	0.14-0.21	6.0-9.0	0.0-0.5
	37-56	35-45	1.35-1.45	0.42-4.00	0.14-0.21	6.0-9.0	0.0-0.5
	56-75	35-45	1.35-1.45	0.42-4.00	0.14-0.21	6.0-9.0	0.0-0.5

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\begin{array}{\|c} \text { Shrink- } \\ \text { swell } \\ \text { potential } \end{array}$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
347, 348:Sleeper-							
	0-5	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	5-9	15-30	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-1.5
	9-19	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	19-35	30-55	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	35-53	30-55	1.40-1.55	1.40-4.00	0.07-0.21	3.0-6.0	0.0-0.5
	$>53$	---	---		---	---	---
350:							
Haploxererts--	0-5	30-40	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	1.0-2.0
	$5-15$	30-40	1.40-1.50	1.40-4.00	0.15-0.19	$3.0-6.0$	$0.5-1.0$
	15-28	40-50	1.35-1.45	0.42-1.40	0.13-0.14	6.0-9.0	0.5-1.0
	28-39	27-35	1.40-1.50	1.40-4.00	0.12-0.14	3.0-6.0	0.2-0.8
	39-52	20-27	1.45-1.55	4.00-14.00	0.08-0.11	0.0-3.0	0.2-0.8
	>52	-	---	---	---	---	---
355:							
Venado--------	0-3	35-65	1.35-1.45	0.42-1.40	0.12-0.21	6.0-9.0	1.0-2.0
	3-13	35-65	1.35-1.45	0.42-1.40	0.12-0.21	6.0-9.0	1.0-2.0
	13-30	35-65	1.35-1.45	0.42-1.40	0.12-0.21	6.0-9.0	1.0-2.0
	30-38	25-45	1.35-1.50	0.42-1.40	0.14-0.21	3.0-6.0	0.0-1.0
	38-53	25-45	1.35-1.50	1.40-4.00	0.14-0.21	3.0-6.0	0.0-1.0
	53-61	25-45	1.35-1.50	1.40-4.00	0.14-0.21	3.0-6.0	0.0-1.0
	61-69	40-80	1.35-1.45	0.42-1.40	0.12-0.16	6.0-9.0	0.0-1.0
360:							
Bearvalley----	0-5	10-18	1.45-1.55	14.00-42.00	0.05-0.10	0.0-3.0	1.0-2.0
	5-20	10-18	1.50-1.60	14.00-42.00	0.04-0.07	0.0-3.0	1.0-2.0
	20-34	10-18	1.50-1.60	14.00-42.00	0.04-0.07	0.0-3.0	1.0-2.0
	34-60	5-10	1.55-1.65	14.00-141.0	0.02-0.05	0.0-3.0	0.5-1.0
	60-75	5-10	1.55-1.65	14.00-141.0	0.02-0.05	0.0-3.0	0.5-1.0
365, 366 :							
Leesville-----			$1.45-1.55$	$1.40-4.00$	$0.13-0.19$	$3.0-6.0$	$2.0-3.0$
	3-16	5-25	1.45-1.55	1.40-4.00	0.13-0.19	3.0-6.0	2.0-3.0
	16-21	5-25	1.45-1.55	1.40-4.00	0.13-0.19	3.0-6.0	2.0-3.0
	21-30	5-15	1.50-1.60	14.00-42.00	0.03-0.09	0.0-3.0	1.0-1.5
	30-46	5-15	1.55-1.65	42.00-141.0	0.02-0.06	0.0-3.0	1.0-1.5
	46-60	5-15	1.55-1.65	42.00-141.0	0.02-0.06	0.0-3.0	1.0-1.5
370:							
Livermore-----	0-7	18-27	1.50-1.60	4.00-42.00	0.02-0.16	3.0-6.0	1.0-1.5
	7-19	18-35	1.45-1.65	1.40-14.00	0.03-0.10	3.0-6.0	1.0-1.5
	19-41	18-35	1.45-1.65	1.40-14.00	0.03-0.10	3.0-6.0	0.5-1.0
	41-63	18-27	1.50-1.60	4.00-42.00	0.02-0.09	3.0-6.0	0.5-1.0
371:							
Buttes--------	0-2	15-30	1.50-1.60	14.00-42.00	0.05-0.10	3.0-6.0	1.0-1.5
	2-7	15-30	1.55-1.65	1.40-4.00	0.07-0.14	3.0-6.0	1.0-1.5
	7-12	25-35	1.60-1.70	1.40-4.00	0.05-0.09	3.0-6.0	0.5-1.0
	12-19	25-35	1.60-1.70	1.40-4.00	0.05-0.09	3.0-6.0	0.5-1.0
	19-24	15-30	1.55-1.65	14.00-42.00	0.04-0.07	3.0-6.0	0.0-0.5
	>24	---	---	---	--	---	--
Millsholm-----	0-2	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	2-8	15-27	1.45-1.50	4.00-14.00	0.14-0.18	0.0-3.0	0.5-1.0
	8-14	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.0-0.5
	>14	--	---	---	---	---	--

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\lvert\, \begin{array}{c\|} \text { Shrink }-\mid \\ \text { swell } \\ \mid \text { potential } \end{array}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
$\begin{aligned} & \text { 519, 520, 521: } \\ & \text { Stonyford---- } \end{aligned}$							
	0-3	20-27	1.45-1.55	4.00-14.00	0.11-0.14	0.0-3.0	0.5-2.0
	3-7	27-35	1.40-1.50	1.40-4.00	0.15-0.18	3.0-6.0	0.2-1.0
	7-14	27-35	1.40-1.50	1.40-4.00	0.12-0.15	3.0-6.0	0.2-1.0
	>14	---	---	---	---	---	---
Guenoc---------	0-4	18-27	1.35-1.45	4.00-14.00	0.14-0.18	0.0-3.0	0.5-2.0
	4-9	20-27	1.35-1.45	4.00-14.00	0.14-0.18	0.0-3.0	0.5-2.0
	9-18	35-45	1.30-1.40	1.40-4.00	0.17-0.21	3.0-6.0	0.0-0.5
	18-31	35-45	1.30-1.40	0.42-1.40	0.14-0.16	3.0-6.0	0.0-0.5
	>31			---	---	---	---
524 :							
Arand---------	0-8	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	8-18	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	18-24	7-15	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.0-1.0
	24-65	5-10	1.50-1.60	14.00-42.00	0.02-0.03	0.0-3.0	0.0-0.5
Riverwash------	0-3	0-10	1.35-1.70	14.00-42.00	0.11-0.13	0.0-3.0	0.0-0.1
	$3-60$	$3-10$	1.35-1.70	14.00-42.00	0.07-0.09	0.0-3.0	$0.0-0.1$
526 :							
Etsel----------	0-3	12-18	1.35-1.50	14.00-42.00	0.08-0.10	0.0-3.0	1.0-2.0
	$3-10$	12-18	1.35-1.50	14.00-42.00	0.06-0.07	0.0-3.0	0.0-0.5
	>10	---	---	---	---	--- \|	---
Maymen--------	0-3	10-25	1.45-1.55	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	3-16	10-25	1.45-1.55	14.00-42.00	0.08-0.10	0.0-3.0	0.2-0.5
	>16	---	---	---	---	---	---
Marpa---------	0-2	---	---	---	0.20-0.30	0.0-0.0	-
	2-5	12-18	1.35-1.45	14.00-42.00	0.06-0.07	0.0-3.0	0.5-2.0
	5-14	27-35	1.35-1.50	1.40-4.00	0.08-0.11	0.0-3.0	0.0-0.5
	14-25	27-35	1.35-1.50	1.40-4.00	0.08-0.11	0.0-3.0	0.0-0.5
	>25	---	---	---	---	---	---
527 :							
Maymen--------	0-3	10-25	1.45-1.55	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	3-16	10-25	1.45-1.55	14.00-42.00	0.08-0.10	0.0-3.0	0.2-0.5
	>16	---	---	---	---	---	---
Etsel---------	0-3	12-18	1.35-1.50	14.00-42.00	0.08-0.10	0.0-3.0	1.0-2.0
	3-10	12-18	1.35-1.50	14.00-42.00	0.06-0.07	0.0-3.0	0.0-0.5
	>10	---	---	-	---	-	---
Speaker--------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-10	18-27	1.45-1.55	4.00-14.00	0.11-0.14	0.0-3.0	2.0-4.0
	10-17	27-35	1.40-1.50	1.40-4.00	0.13-0.16	3.0-6.0	0.5-2.0
	17-26	27-35	1.40-1.50	1.40-4.00	0.13-0.16	3.0-6.0	0.5-2.0
	>26	---	---	---	---	---	---
528 :							
Maymen--------	0-3	10-25	1.45-1.55	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	3-16	10-25	1.45-1.55	14.00-42.00	0.08-0.10	0.0-3.0	0.2-0.5
	>16	-	---	---	---	---	---
Etsel----------	0-3	12-18	1.35-1.50	14.00-42.00	0.08-0.10	0.0-3.0	1.0-2.0
	3-10	12-18	1.35-1.50	14.00-42.00	0.06-0.07	0.0-3.0	0.0-0.5
	>10	---	---	---	---	---	---

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\begin{array}{\|c} \text { Shrink- } \\ \text { swell } \\ \text { potential } \end{array}$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
528 :							
Snook----------	0-1	10-25	1.50-1.60	14.00-42.00	0.08-0.10	0.0-3.0	0.5-2.0
	1-8	10-25	1.50-1.60	14.00-42.00	0.07-0.09	0.0-3.0	0.5-2.0
	>8	---	---	---	---	---	---
529 :							
Maymen--------	0-3	10-25	1.45-1.55	14.00-42.00	0.10-0.13	0.0-3.0	0.5-1.0
	3-16	10-25	1.45-1.55	14.00-42.00	0.08-0.10	0.0-3.0	0.2-0.5
	>16	-	---	---	-	\| ---	---
Etsel---------	0-3	12-18	1.35-1.50	14.00-42.00	0.08-0.10	0.0-3.0	1.0-2.0
	3-10	12-18	1.35-1.50	14.00-42.00	0.06-0.07	0.0-3.0	0.0-0.5
	>10	---	---	-	---	\| ---	---
Mayacama------	0-10	10-20	1.50-1.60	14.00-42.00	0.08-0.10	0.0-3.0	1.0-3.0
	10-21	20-27	1.45-1.55	1.40-4.00	0.10-0.13	0.0-3.0	0.5-1.0
	21-30	20-27	1.45-1.55	1.40-4.00	0.10-0.13	0.0-3.0	0.5-1.0
	30-37	10-20	1.55-1.65	14.00-42.00	0.05-0.07	0.0-3.0	0.2-0.8
	>37	---	---	---	---	---	---
542 :							
Okiota---------	0-5	18-27	1.45-1.55	4.00-14.00	0.13-0.17	0.0-3.0	2.0-4.0
	5-8	35-50	1.40-1.50	1.40-4.00	0.15-0.19	3.0-6.0	0.5-2.0
	8-15	35-50	1.40-1.50	0.42-1.40	0.13-0.15	6.0-9.0	0.5-2.0
	>15	---	---	---	---	---	---
Dubakella------	0-3	27-35	1.35-1.45	1.40-4.00	0.17-0.21	3.0-6.0	1.0-2.0
	3-10	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	10-16	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	16-26	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	>26	---	---	---	---	---	---
Henneke-------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-4	10-18	1.50-1.60	14.00-42.00	0.09-0.12	0.0-3.0	1.0-2.0
	4-7	35-50	1.40-1.50	1.40-4.00	0.07-0.09	6.0-9.0	0.5-1.0
	7-16	35-50	1.35-1.45	0.42-1.40	0.04-0.05	6.0-9.0	0.5-1.0
	>16	---	---	---	0.04-0.05	---	---
545 :							
Henneke-------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-4	10-18	1.50-1.60	14.00-42.00	0.09-0.12	0.0-3.0	1.0-2.0
	4-7	35-50	1.40-1.50	1.40-4.00	0.07-0.09	6.0-9.0	0.5-1.0
	7-16	35-50	1.35-1.45	0.42-1.40	0.04-0.05	6.0-9.0	0.5-1.0
	>16	---				---	---
Montara--------							
	6-10	5-15	1.50-1.60	14.00-42.00	0.08-0.11	0.0-3.0	1.0-2.0
	>10	-	---	---	---	---	---
Rock outcrop---	0-60	---	---	4.00-14.00	--	---	---
548, 549:							
Henneke-------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-4	10-18	1.50-1.60	14.00-42.00	0.09-0.12	0.0-3.0	1.0-2.0
	4-7	35-50	1.40-1.50	1.40-4.00	0.07-0.09	6.0-9.0	0.5-1.0
	7-16	35-50	1.35-1.45	0.42-1.40	0.04-0.05	6.0-9.0	0.5-1.0
	>16	-	-	---	---	---	---
Okiota--------	0-5	18-27	1.45-1.55	4.00-14.00	0.13-0.17	0.0-3.0	2.0-4.0
	5-8	35-50	1.40-1.50	1.40-4.00	0.15-0.19	3.0-6.0	0.5-2.0
	8-15	35-50	1.40-1.50	0.42-1.40	0.13-0.15	6.0-9.0	0.5-2.0
	>15	-	--	---	---	---	---

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	```Moist bulk density```	Ksat	Available water capacity	$\left\lvert\, \begin{gathered} \text { Shrink }-\mid \\ \text { swell } \\ \mid \text { potential } \mid \end{gathered}\right.$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	PCt
557 :							
Neuns---------	0-2	---	---	---	0.20-0.30	0.0-0.0	---
	2-7	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	1.0-4.0
	7-15	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	0.5-1.0
	15-29	7-18	1.35-1.50	4.00-14.00	0.05-0.08	0.0-3.0	0.3-1.0
	>29	-	---	---	---	---	
Bamtush--------	0-1	---		---	0.20-0.30	0.0-0.0	---
	1-9	18-27	1.30-1.45	4.00-14.00	0.07-0.10	0.0-3.0	2.0-4.0
	9-25	18-27	1.30-1.45	4.00-14.00	0.07-0.10	0.0-3.0	2.0-4.0
	25-39	25-35	1.35-1.50	1.40-4.00	0.06-0.10	3.0-6.0	0.2-0.5
	39-49	25-35	1.35-1.50	1.40-4.00	0.06-0.10	3.0-6.0	0.2-0.5
	49-61	20-35	1.35-1.50	1.40-4.00	0.06-0.10	0.0-3.0	0.2-0.5
	61-68	27-40	1.30-1.40	1.40-4.00	0.13-0.16	3.0-6.0	0.2-0.5
Speaker-------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-10	18-27	1.45-1.55	4.00-14.00	0.11-0.14	0.0-3.0	2.0-4.0
	10-17	27-35	1.40-1.50	1.40-4.00	0.13-0.16	3.0-6.0	0.5-2.0
	17-26	27-35	1.40-1.50	1.40-4.00	0.13-0.16	3.0-6.0	0.5-2.0
	>26	---	---	---	---	---	
564:							
Fouts---------	0-6	18-27	1.45-1.55	4.00-14.00	0.14-0.18	1.0-3.0	1.0-2.0
	6-12	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	12-18	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	18-26	40-50	1.35-1.45	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	>26	---	---	---	---	---	---
Yorkville-----		27-40	1.40-1.50	1.40-4.00	0.17-0.20	$3.0-6.0$	1.0-4.0
	$2-15$	35-50	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	1.0-4.0
	15-40	35-50	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	40-55	35-50	1.35-1.50	0.42-1.40	0.14-0.16	6.0-9.0	0.5-1.0
	55-60	27-40	1.40-1.50	1.40-4.00	0.17-0.20	3.0-6.0	0.2-0.5
	$>60$	-	---	---	---	---	---
Squawrock------	0-2	18-27	1.35-1.45	4.00-14.00	0.12-0.15	0.0-3.0	1.0-3.0
	2-9	27-35	1.35-1.45	1.40-4.00	0.09-0.11	3.0-6.0	0.5-1.0
	9-18	27-35	1.35-1.45	1.40-4.00	0.09-0.11	3.0-6.0	0.5-1.0
	18-23	40-45	1.25-1.35	0.42-1.40	0.08-0.09	6.0-9.0	0.2-0.5
	23-26	40-45	1.25-1.35	0.42-1.40	0.08-0.09	6.0-9.0	0.2-0.5
	>26	---	---	---	--	---	---
570 :							
Endoaquolls----	0-4	12-27	1.45-1.55	4.00-14.00	0.16-0.20	3.0-6.0	1.0-4.0
	4-15	15-27	1.45-1.55	4.00-14.00	0.14-0.18	3.0-6.0	1.0-4.0
	15-24	27-40	1.45-1.55	1.40-4.00	0.17-0.21	3.0-6.0	1.0-3.0
	24-40	27-40	1.40-1.50	1.40-4.00	0.17-0.21	3.0-6.0	0.5-2.0
	40-55	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.5-2.0
	55-60	18-27	1.45-1.50	4.00-14.00	0.11-0.14	0.0-3.0	0.5-2.0
590:							
Neuns----------	0-2	---	---	---	0.20-0.30	0.0-0.0	---
	2-7	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	1.0-4.0
	7-15	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	0.5-1.0
	15-29	7-18	1.35-1.50	4.00-14.00	0.05-0.08	0.0-3.0	0.3-1.0
	>29	-	-	---	--	--	---
Marpa---------	0-2	---	---	---	0.20-0.30	0.0-0.0	---
	2-5	12-18	1.35-1.45	14.00-42.00	0.06-0.07	0.0-3.0	0.5-2.0
	5-14	27-35	1.35-1.50	1.40-4.00	0.08-0.11	0.0-3.0	0.0-0.5
	14-25	27-35	1.35-1.50	1.40-4.00	0.08-0.11	0.0-3.0	0.0-0.5
	>25	-	---	---	---	---	--

Table 22.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Ksat	Available water capacity	$\left\|\begin{array}{c}\text { Shrink- } \\ \text { swell } \\ \mid \text { potential }\end{array}\right\|$	Organic matter
	In	Pct	$g / c c$	um/sec	In/in	Pct	Pct
Goulding------	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-4	10-20	1.35-1.50	4.00-14.00	0.11-0.16	0.0-3.0	1.0-3.0
	4-8	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	8-13	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	>13	---	---	-	-	---	-
591:							
Neuns----------	0-2	---	---	---	0.20-0.30	0.0-0.0	---
	2-7	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	1.0-4.0
	7-15	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	0.5-1.0
	15-29	7-18	1.35-1.50	4.00-14.00	0.05-0.08	0.0-3.0	0.3-1.0
	$>29$	---	---	---		---	---
Sheetiron-----	0-1		---	---	0.20-0.30	0.0-0.0	
	1-4	10-25	1.45-1.55	14.00-42.00	0.07-0.09	0.0-3.0	1.0-2.0
	4-9	12-25	1.50-1.60	14.00-42.00	0.05-0.07	0.0-3.0	0.0-0.5
	9-18	12-25	1.50-1.60	14.00-42.00	0.05-0.07	0.0-3.0	0.0-0.5
	18-30	12-25	1.55-1.65	14.00-42.00	0.04-0.05	0.0-3.0	0.0-0.5
	>30	-	---	---	---	---	-
Goulding------							
	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-4	10-20	1.35-1.50	4.00-14.00	0.11-0.16	0.0-3.0	1.0-3.0
	4-8	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	8-13	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	>13	---		---	---	.	-
592 :							
Neuns---------			---	---	0.20-0.30	0.0-0.0	---
	2-7	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	1.0-4.0
	7-15	7-18	1.35-1.50	4.00-14.00	0.08-0.11	0.0-3.0	0.5-1.0
	15-29	7-18	1.35-1.50	4.00-14.00	0.05-0.08	0.0-3.0	0.3-1.0
	>29	---	---	---	---	---	---
Goulding------	0-1			---	0.20-0.30	0.0-0.0	---
	1-4	10-20	1.35-1.50	4.00-14.00	0.11-0.16	0.0-3.0	1.0-3.0
	4-8	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	8-13	10-20	1.40-1.50	4.00-14.00	0.07-0.09	0.0-3.0	0.5-1.0
	>13	---	---	---	---	---	---
Sheetiron-----	0-1	---	---	---	0.20-0.30	0.0-0.0	--
	1-4	10-25	1.45-1.55	14.00-42.00	0.07-0.09	0.0-3.0	1.0-2.0
	4-9	12-25	1.50-1.60	14.00-42.00	0.05-0.07	0.0-3.0	0.0-0.5
	9-18	12-25	1.50-1.60	14.00-42.00	0.05-0.07	0.0-3.0	0.0-0.5
	18-30	12-25	1.55-1.65	14.00-42.00	0.04-0.05	0.0-3.0	0.0-0.5
	>30	---	---	---	---	--- \|	-
596:							
Yollabolly----	0-2	10-25	1.55-1.65	4.00-14.00	0.08-0.10	0.0-3.0	0.5-2.0
	2-6	10-25	1.55-1.65	4.00-14.00	0.08-0.10	0.0-3.0	0.5-2.0
	6-17	10-25	1.55-1.65	4.00-14.00	0.08-0.10	0.0-3.0	0.0-0.5
	>17	-	-	---	--	-	--
Rock outcrop---	0-60	-	-	4.00-14.00	--	---	---
Freezeout-----	0-1	---	---	---	0.20-0.30	0.0-0.0	---
	1-6	10-15	1.25-1.45	14.00-42.00	0.07-0.09	0.0-3.0	2.0-5.0
	6-17	10-15	1.25-1.45	14.00-42.00	0.07-0.09	0.0-3.0	2.0-5.0
	17-26	12-18	1.25-1.45	14.00-42.00	0.04-0.06	0.0-3.0	1.0-3.0
	>26	---	-	---	---	--	-

Table 22.--Physical Properties of the Soils--Continued


Table 23.--Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated.)


Table 23.--Chemical Properties of the Soils--Continued


Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | ```\| Cation- | exchange |capacity``` | Soil reaction | $\begin{array}{\|c\|} \mid \text { Calcium } \\ \mid \text { carbon }-\mid \\ \mid \text { ate } \end{array}$ | Gypsum | Salinity | Sodium adsorption ratio ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151: | In | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ | $p H$ | Pct | Pct | mmhos/cm |  |
| Hillgate-------- | 0-3 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 3-11 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 11-19 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 19-37 | 25-30 | 6.6-7.8 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 37-52 | 25-30 | 6.6-7.8 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  | 52-62 | 25-35 | 6.6-8.4 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  | 62-72 | 25-35 | 6.6-8.4 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  |  |  |  |  |  |  |  |
| 152: |  |  |  |  |  |  |  |
| Arbuckle-------- | 0-8 | 15-25 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-29 | 20-30 | 6.1-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 29-51 | 20-30 | 6.1-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | $51-60$ | 15-25 | 6.1-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  |  |  |  |  |  |  |
| 155: |  |  |  |  |  |  |  |
| Alcapay--------- | 0-5 | 30-50 | 6.0-8.4 | 0-2 | 0-2 | 0.0-8.0 | 1-10 |
|  | 5-10 | 30-50 | 6.6-8.4 | 0-2 | 0-2 | 0.0-8.0 | 1-10 |
|  | 10-24 | 30-50 | 6.6-8.4 | 0-2 | 0-2 | 0.0-8.0 | 1-10 |
|  | 24-35 | 30-50 | 6.6-8.4 | 0-10 | 0-2 | 0.0-8.0 | 1-10 |
|  | 35-53 | 25-50 | 7.9-9.5 | 0-2 | 0-2 | 0.0-8.0 | 25-50 |
|  | $53-64$ | 25-50 | 7.9-9.5 | 0-10 | 0-2 | 0.0-8.0 | 25-50 |
|  |  |  |  |  |  |  |  |
| 160: |  |  |  |  |  |  |  |
| Grandbend------- | 0-16 | 10-20 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  | 16-27 | 5.0-30 | 7.4-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  | 27-44 | 5.0-30 | 7.4-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  | 44-54 | 5.0-30 | 7.4-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  | 54-64 | 15-25 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  | 64-67 | 15-25 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-4 |
|  |  |  |  |  |  |  |  |
| 170, 171: |  |  |  |  |  |  |  |
| Vina----------- | 0-8 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-14 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 14-21 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 21-26 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 26-46 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 46-48 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 48-60 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  |  |  |  |  |  |  |
| 172: |  |  |  |  |  |  |  |
| Vina------------ | 0-15 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 15-25 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 25-42 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 42-52 | 5.0-15 | 6.1-7.3 | 0-1 \| | 0-1 | 0.0-2.0 | 0-2 |
|  | 52-60 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  |  |  |  |  |  |  |
| 174: |  |  |  |  |  |  |  |
| Vina------------ | 0-8 | 10-20 | 6.1-7.3 | 0-1 \| | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-14 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 14-21 | 10-20 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 21-26 | 5.0-15 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 26-46 | 5.0-15 | 6.1-7.3 | 0-1 \| | 0-1 | 0.0-2.0 | 0-2 |
|  | 46-48 | 5.0-15 | 6.1-7.3 | 0-1 \| | 0-1 | 0.0-2.0 | 0-2 |
|  | 48-60 | 5.0-15 | 6.1-7.3 | 0-1 \| | 0-1 | 0.0-2.0 | 0-2 |
|  |  |  |  |  |  |  |  |

Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued

Map symbol and soil name	Depth		$\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$		Gypsum	Salinity	Sodium adsorption ratio ratio	
		Cation\|exchange	capacity		$\begin{array}{\|c\|} \mid \text { Calcium } \\ \mid \text { carbon- } \mid \\ \text { ate } \end{array}$			
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm		
200:								
Clear Lake-	0-4	30-50	5.6-7.3	0-2	0-1	0.0-4.0	0-12	
	4-10	30-50	5.6-7.3	0-2	0-1	0.0-4.0	0-12	
	10-20	30-55	5.6-7.8	0-2	0-1	0.0-4.0	0-12	
	20-34	30-50	5.6-7.8	0-2	0-1	0.0-4.0	0-12	
	34-47	30-50	5.6-8.4	0-2	0-1	0.0-4.0	0-12	
	47-59	30-45	7.4-9.0	0-2	0-1	0.0-4.0	0-12	
	59-79	30-45	7.4-9.0	0-2	0-1	0.0-4.0	0-12	
204, 205, 206:								
Capay-	0-4	35-50	5.6-8.4	0	0	0.0-0.5	0-2	
	4-11	35-50	5.6-8.4	0	0	0.0-0.5	0-2	
	11-23	35-50	6.6-8.4	0	0	0.0-0.5	0-2	
	23-30	35-50	6.6-8.4	0	0	0.0-0.5	0-2	
	30-43	35-50	6.6-8.4	0	0	0.0-0.5	0-5	
	43-58	35-50	6.6-8.4	0-2	0	0.0-1.0	0-5	
	58-74	35-50	6.6-9.0	0-2	0	0.0-1.0	0-5	
	74-90	35-50	6.6-9.0	0-1	0	0.0-1.0	0-5	
	90-102\|	35-50	6.6-9.0	0-1	0	0.0-1.0	0-5	
210:								
Corval-	0-8	10-20	6.1-6.5	0-1	0-1	0.0-2.0	0-2	
	8-24	15-25	6.1-6.5	0-1	0-1	0.0-2.0	0-2	
	24-36	15-25	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
	36-46	15-25	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
	46-60	15-25	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
	60-70	15-25	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
211:								
Corval-	0-10	15-25	6.1-6.5	0-1	0-1	0.0-2.0	0-2	
	10-50	15-25	6.1-6.5	0-1	0-1	0.0-2.0	0-2	
	50-60	15-25	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
212, 213:								
Ayar----	0-9	30-45	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	9-25	30-45	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	25-36	30-45	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	36-46	30-45	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	46-58	30-45	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	58-72	25-35	7.4-8.4	2-15	0-2	0.0-2.0	0-2	
	>72	---	---	---	---	--	---	
215, 216:								
Altamont	0-3	30-50	6.1-8.4	0-2 \|	0-1	0.0-2.0	0-2	
	3-9	30-50	6.1-8.4	0-2 \|	0-1	0.0-2.0	0-2	
	9-23	30-50	7.4-8.4	0-2 \|	0-1	0.0-2.0	0-2	
	23-35	30-50	7.4-8.4	0-2	0-1	0.0-2.0	0-2	
	35-43	30-50	7.4-8.4	0-2 \|	0-1	0.0-2.0	0-2	
	43-49	30-45	7.4-8.4	0-2 \|	0-1	0.0-2.0	0-2	
	>49	---	---	---	--	---	---	
Sehorn-	0-5	30-45	5.6-7.3	0-2 \|	0-1	0.0-2.0	0-2	
	5-9	30-50	5.6-7.3	0-2 \|	0-1	0.0-2.0	0-2	
	9-19	30-45	5.6-7.3	0-2 \|	0-1	0.0-2.0	0-2	
	19-26	30-50	5.6-7.8	0-2 \|	0-1	0.0-2.0	0-2	
	26-35 \|	\| 30-45	5.6-7.8	0-2 \|	0-1	0.0-2.0	0-2	
	>35	---	---	--- \|	---	---	---	

Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium carbonate | Gypsum | Salinity | Sodium adsorption ratio ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 280: | In | $\|m e q / 100 \mathrm{~g}\|$ | pH | Pct | Pct | mmhos/cm |  |
| Skyhigh--------- | 0-3 | 10-20 | 5.6-6.5 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 3-8 | 15-30 | 5.6-6.5 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-25 | 20-40 | 5.6-6.5 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 25-37 | 15-30 | 5.6-6.5 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >37 | - | --- | --- | --- | --- | --- |
| Millsholm------- | 0-2 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 2-8 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-14 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >14 | - | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 300: |  |  |  |  |  |  |  |
| Contra Costa---- | 0-3 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 3-8 | \| 15-25 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-16 | 15-25 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 16-28 | 20-35 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 28-35 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >35 | - | --- | --- | --- | --- | -- |
|  |  |  |  |  |  |  |  |
| Millsholm------- | 0-2 | \| 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 2-8 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-14 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >14 | - | --- | - | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 305, 311: |  |  |  |  |  |  |  |
| Contra Costa---- | 0-3 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 3-8 | 15-25 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-16 | 15-25 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 16-28 | 20-35 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 28-35 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >35 | - --- | --- | - | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 312, 313: |  |  |  |  |  |  |  |
| Saltcanyon------ | 0-13 | 7.0-22 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 13-25 | 11-28 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 25-43 | 11-28 | 6.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 43-61 | 11-28 | 6.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  |  |  |  |  |  |  |
| 315: |  |  |  |  |  |  |  |
| Mallard--------- | 0-3 | 25-30 | 6.1-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 3-8 | \| 25-30 | 6.1-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-15 | 25-40 | 6.6-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 15-28 | 25-40 | 6.6-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 28-44 | 25-30 | 6.6-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 44-60 | \| 25-30 | 6.6-8.4 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  | \| |  |  |  |  |  |
| 316: |  |  |  |  |  |  |  |
| Hillgate------- | 0-3 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 3-11 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 11-19 | 10-20 | 5.1-6.5 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 19-37 | 25-30 | 6.6-7.8 | 0-1 | 0-2 | 0.0-2.0 | 0-2 |
|  | 37-52 | 25-30 | 6.6-7.8 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  | 52-62 | \| 25-35 | 6.6-8.4 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  | 62-72 | 25-35 | 6.6-8.4 | 0-1 | 0-2 | 0.0-2.0 | 2-4 |
|  |  |  |  |  |  |  |  |

Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued

Map symbol and soil name	Depth	Cation-	Soil	\|Calcium		Gypsum	Salinity	Sodium adsorption ratio ratio
		exchange	reaction	\|carbon-				
		capacity		ate				
		(100						
	In	meq/100 g	pH	Pct	Pct	mmhos/cm		
332:								
Rock outcrop-	0-60	---	---	---	-	---	---	
334:								
Millsholm------	0-2	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	2-8	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	8-14	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	>14	---	---	---	---	---	---	
Contra Cost	0-3	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	3-8	15-25	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	8-16	15-25	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	16-28	20-35	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	28-35	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	>35	---	---	---	---	---	---	
337:								
Millsholm-------	0-2	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	2-8	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	8-14	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	>14	---	---	---	---	---	---	
Saltcanyon------	0-13	7.0-22	6.1-7.3	0-1	0-1	0.0-2.0	0-2	
	13-25	11-28	6.6-7.3	0-1	0-1	0.0-2.0	0-2	
	25-43	11-28	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	43-61	11-28	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
345:								
Skyhigh---------	0-3	10-20	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	3-8	15-30	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	8-25	20-40	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	25-37	15-30	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	>37	-	---	---	---	--	---	
Sleeper---------	0-5	10-25	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	5-9	10-25	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	9-19	20-45	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	19-35	20-45	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	35-53	20-45	6.6-7.8	0-1	0-1	0.0-2.0	0-2	
	>53	---	---	---	---	---	---	
Millsholm-	0-2	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	2-8	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	8-14	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	>14	---	---	---	---	--	---	
346:								
Skyhigh--------	0-3	10-20	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	3-8	15-30	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	8-25	20-40	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	25-37	15-30	5.6-6.5	0-1	0-1	0.0-2.0	0-2	
	>37	---	---	---	---	---	---	
Millsholm-------	0-2	10-20	5.6-7.3	0-1	0-1	0.0-2.0	0-2	
	2-8	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	8-14	10-20	5.6-7.8	0-1	0-1	0.0-2.0	0-2	
	>14	---	---	---	---	---	---	

Table 23.--Chemical Properties of the Soils-Continued


Table 23.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation\|exchange |capacity | Soil reaction | $\left.\begin{array}{\|c\|} \mid \text { Calcium } \\ \mid \text { carbon }-\mid \\ \text { ate } \end{array} \right\rvert\,$ | Gypsum | Salinity | Sodium adsorption ratio ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 370: | In | $\mid \mathrm{meq} / 100$ | $\mathrm{pH}$ | Pct | Pct | mmhos/cm |  |
| Livermore- | 0-7 | 11-22 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 7-19 | 11-28 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 19-41 | 11-28 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 41-63 | 11-22 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  |  | I |  |  |  |  |  |
| 371: |  |  |  |  |  |  |  |
| Buttes---------- | 0-2 | 9.0-21 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 2-7 | 9.0-21 | 6.1-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 7-12 | 14-28 | 6.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 12-19 | 14-28 | 6.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 19-24 | 9.0-24 | 6.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
| Millsholm------- | >24 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
|  | 0-2 | 10-20 | 5.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 2-8 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | 8-14 | 10-20 | 5.6-7.8 | 0-1 | 0-1 | 0.0-2.0 | 0-2 |
|  | >14 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 519, 520, 521: |  |  |  |  |  |  |  |
| Stonyford | 0-3 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 | 0 |
|  | 3-7 | 15-25 | 5.6-7.3 | 0 | 0 | 0 | 0 |
|  | 7-14 | 15-25 | 5.6-7.3 | 0 | 0 | 0 | 0 |
| Guenoc----------- | >14 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
|  | 0-4 | 10-20 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 4-9 | 10-20 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 9-18 | 20-35 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 18-31 | 20-35 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | >31 | --- | - | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 524: |  |  |  |  |  |  |  |
| Arand----------- | 0-8 | 5.0-10 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-1 |
|  | 8-18 | 5.0-10 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-1 |
|  | 18-24 | 5.0-10 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-1 |
|  | 24-65 | 2.0-5.0 | 6.6-7.3 | 0-1 | 0-1 | 0.0-2.0 | 0-1 |
|  |  |  |  |  |  |  |  |
| Riverwash------- | 0-3 | \| --- | --- | - | --- | 0.0-2.0 | -- |
|  | 3-60 | - | - | --- | -- | 0.0-2.0 | --- |
|  |  | I |  |  |  |  |  |
| 526 : |  |  |  |  |  |  |  |
| Etsel----------- | 0-3 | 5.0-15 | 5.6-6.5 | 0 | 0 | 0 | 0 |
|  | 3-10 | 5.0-15 | 5.6-6.5 | 0 | 0 | 0 | 0 |
|  | >10 | --- | --- | --- | --- | --- | --- |
|  |  | 1 |  |  |  |  |  |
| Maymen---------- | 0-3 | 5.0-20 | 5.6-6.5 | 0 | 0 | 0 | 0 |
|  | 3-16 | 5.0-20 | 5.1-6.0 | 0 | 0 | 0 | 0 |
|  | >16 | - | - | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| Marpa----------- | 0-2 | --- | --- | 0 | 0 | --- |  |
|  | 2-5 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 | 0 |
|  | 5-14 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 14-25 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | >25 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 527 : |  |  |  |  |  |  |  |
| Maymen---------- | 0-3 | 5.0-20 | 5.6-6.5 | 0 | 0 | 0 | 0 |
|  | 3-16 | 5.0-20 | 5.1-6.0 | 0 | 0 | 0 | 0 |
|  | >16 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |

Table 23.--Chemical Properties of the Soils-Continued

						Salinity	```Sodium adsorp- tion ratio ratio```	
Map symbol and soil name	Depth	Cation-	Soil	\|Calcium		Gypsum		
		\|exchange	reaction	\|carbon-				
		capacity		ate				
				,				
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm		
527:								
Etsel-----------	0-3	5.0-15	5.6-6.5	0	0	0	0	
	3-10	5.0-15	5.6-6.5	0	0	0	0	
	>10	---	---	---	---	---	---	
Speaker---------	0-1	---	--	0	0	---	0	
	1-10	10-20	5.1-6.5	0	0	0	0	
	10-17	15-20	4.5-6.0	0	0	0	0	
	17-26	15-20	4.5-6.0	0	0	0	0	
	>26	---	---	---	---	---	---	
528 :								
Maymen----------	0-3	5.0-20	5.6-6.5	0	0	0	0	
	3-16	5.0-20	5.1-6.0	0	0	0	0	
	>16	---	---	---	---	---	---	
Etsel-----------	0-3	5.0-15	5.6-6.5	0	0	0	0	
	3-10	5.0-15	5.6-6.5	0	0	0	0	
	>10	---	---	---	---	---	---	
Snook-----------	0-1	5.0-15	5.1-6.0	0	0	0	0	
	1-8	5.0-15	5.1-6.0	0	0	0	0	
	>8	---	---	---	---	---	---	
529 :								
Maymen----------	0-3	5.0-20	5.6-6.5	0	0	0	0	
	3-16	5.0-20	5.1-6.0	0	0	0	0	
	>16	---	-	---	---	---	---	
Etsel-----------	0-3	5.0-15	5.6-6.5	0	0	0	0	
	3-10	5.0-15	5.6-6.5	0	0	0	0	
	>10	---	-	---	---	---	---	
Mayacama--------	0-10	10-15	6.1-7.3	0	0	0	0	
	10-21	15-25	5.1-5.5	0	0	0	0	
	21-30	15-25	5.1-5.5	0	0	0	0	
	30-37	10-15	5.1-5.5	0	0	0	0	
	>37	---	---	---	---	---	---	
542 :								
Okiota----------	0-5	10-20	6.1-7.8	0	0	0	0	
	5-8	15-25	6.1-7.8	0	0	0	0	
	8-15	20-30	6.1-7.8	0	0	0	0	
	>15	---	---	---	---	---	---	
Dubakella-------	0-3	15-30	6.6-7.3	0	0	0	0	
	3-10	25-40	6.6-7.3	0	0	0	0	
	10-16	25-40	6.6-7.3	0	0	0	0	
	16-26	25-40	6.6-7.3	0	0	0	0	
	>26	---	---	---	---	---	---	
				1 \|				
Henneke---------	0-1	\| ---	---	0	0	---	0	
	1-4	5.0-15	5.6-7.3	0	0	0	0	
	4-7	20-40	6.6-7.8	0	0	0	0	
	7-16	20-40	6.6-7.8	0	0	0	0	
	>16	---	---	---	---	---	---	

Table 23.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cationexchange capacity | Soil reaction | \|Calcium |carbonate | Gypsum | Salinity | Sodium adsorption ratio ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 545: | In | meq/100 g | $\mathrm{pH}$ | Pct | Pct | mmhos/cm |  |
| Henneke-------- | 0-1 | --- | --- | 0 | 0 | --- | 0 |
|  | 1-4 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 | 0 |
|  | 4-7 | 20-40 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | 7-16 | 20-40 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | >16 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Montara--------- | 0-6 | 5.0-15 | 6.6-8.4 | 0 | 0 | 0 | 0 |
|  | 6-10 | 5.0-15 | 6.6-8.4 | 0 | 0 | 0 | 0 |
|  | >10 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Rock outcrop---- | 0-60 | --- | --- | --- | 0 | --- | --- |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 548, 549: |  |  |  |  |  |  |  |
| Henneke- | 0-1 | --- | - | 0 | 0 | --- | 0 |
|  | 1-4 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 | 0 |
|  | 4-7 | 20-40 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | 7-16 | 20-40 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | >16 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Okiota---------- | 0-5 | 10-20 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 5-8 | 15-25 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 8-15 | 20-30 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | >15 | --- | , | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 557 : |  |  |  |  |  |  |  |
| Neuns | 0-2 | --- | --- | 0 | 0 | --- | 0 |
|  | $2-7$ | 15-25 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 7-15 | 15-25 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 15-29 | 15-25 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | >29 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Bamtush--------- | 0-1 | --- | - | 0 | 0 | --- | 0 |
|  | 1-9 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 9-25 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 25-39 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 39-49 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 49-61 | 10-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  | 61-68 | 15-20 | 5.1-6.5 | 0 | 0 | 0 | 0 |
|  |  |  |  |  |  |  |  |
| Speaker--------- | 0-1 | --- | --- |  |  | --- | 0 |
|  | 1-10 | 10-20 | 5.1-6.5 | 0 | $0$ | 0 | 0 |
|  | 10-17 | 15-20 | 4.5-6.0 | 0 | 0 | 0 | 0 |
|  | 17-26 | 15-20 | 4.5-6.0 | \| 0 | 0 | 0 | 0 |
|  | >26 | --- | --- | \| --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 564 : |  |  |  |  |  |  |  |
| Fouts | 0-6 | 10-18 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 6-12 | 16-30 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 12-18 | 16-30 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 18-26 | 16-30 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | >26 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Yorkville------ | 0-2 | 10-25 | 6.1-7.8 | 0 | 0 | 0 | 0 |
|  | 2-15 | 10-35 | 6.6-8.4 | 0-2 | 0 | 0 | 0 |
|  | 15-40 | 10-35 | 6.6-8.4 | 0-2 | 0 | 0 | 0 |
|  | 40-55 | 10-35 | 6.6-8.4 | 0-2 | 0 | 0 | 0 |
|  | 55-60 | 10-25 | 6.6-8.4 | 0-2 | 0 | 0 | 0 |
|  | >60 | \| --- | --- | \| --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |

Table 23.--Chemical Properties of the Soils--Continued


Table 23.--Chemical Properties of the Soils--Continued


Table 23.--Chemical Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils
(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer.)

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
100:Capay	In					
	0-15	. 28	. 28	5	4	86
	15-33	. 28	. 28			
	33-39	. 24	. 24			
	39-46	. 24	. 24			
	46-64	. 24	. 24			
101:						
Capay-	0-8	. 24	. 28	5	4	86
	8-21	. 24	. 24			
	21-36	. 24	. 24			
	36-48	. 28	. 28			
	48-58	. 28	. 28			
$102,103:$						
Capay---	0-15	. 28	. 28	5	4	86
	15-33	. 28	. 28			
	33-39	. 24	. 24			
	39-46	. 24	. 24			
	46-64	. 24	. 24			
104, 105, 106:						
Willows	0-5	. 28	. 28	5	4	86
	5-13	. 28	. 28			
	13-20	. 28	. 28			
	20-39	. 28	. 28			
	39-51	. 28	. 28			
	51-59	. 28	. 28			
	59-72	. 28	. 28			
	72-80	. 28	. 28			
	80-87	. 28	. 28			
107, 108, 109:						
Scribner	0-6	. 43	. 43	5	6	48
	6-12	. 37	. 37			
	12-20	. 37	. 37			
	20-33	. 37	. 37			
	33-41	. 37	. 37			
	41-60	. 37	. 37			
110:						
Hustabel	0-3	. 37	. 37	5	3	86
	3-13	. 37	. 37			
	13-20	. 37	. 37			
	20-31	. 37	. 37			
	31-35	. 43	. 43			
	35-40	. 37	. 37			
	40-48	. 37	. 37			
	48-52	. 32	. 32			
	52-61	. 20	. 20			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
$\begin{gathered} \text { 130, 131, 133: } \\ \text { Corbiere----- } \end{gathered}$						
	In					
	0-6	. 43	. 43	5	6	48
	6-13	. 43	. 43			
	13-21	. 43	. 43			
	21-33	. 32	. 32			
	33-46	. 32	. 32			
	46-59	. 32	. 32			
	59-73	. 32	. 32			
	73-94	. 32	. 32			
	94-114	. 32	. 32			
136:						
Colusa-	0-2	. 49	. 49	5	5	56
	2-9	. 49	. 49			
	9-19	. 49	. 49			
	19-25	. 49	. 49			
	25-35	. 49	. 49			
	35-52	. 49	. 49			
	52-64	. 43	. 43			
	64-79	. 43	. 43			
141:						
Myers	0-3	. 28	. 28	5	4	86
	3-25	. 28	. 28			
	25-43	. 28	. 28			
	43-56	. 28	. 28			
	56-71	. 28	. 28			
144:						
Hillgate	0-10	. 28	. 28	5	4	86
	10-19	. 28	. 28			
	19-50	. 24	. 24			
	50-60	. 28	. 28			
$145:$						
Hillgate	0-3	. 28	. 28	5	6	48
	3-11	. 28	. 28			
	11-19	. 28	. 28			
	19-37	. 24	. 24			
	37-52	. 28	. 28			
	52-62	. 28	. 28			
	62-72	. 28	. 28			
147:						
Hillgate	0-3	. 28	. 28	5	6	48
	3-11	. 28	. 28			
	11-19	. 28	. 28			
	19-37	. 24	. 24			
	37-52	. 28	. 28			
	52-62	. 28	. 28			
	62-72	. 28	. 28			
150: \|						
Arbuckle------------	0-4	. 32	. 32	5	3	86
	4-10	. 32	. 32			
	10-17	. 32	. 32			
	17-26	. 24	. 28			
	26-34	. 20	. 24			
	34-44	. 20	. 24			
	44-68	. 10	. 17			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
	In					
215, 216:						
Sehorn--------------	0-5	. 28	. 28	2	4	86
	5-9	. 28	. 28			
	9-19	. 28	. 24			
	19-26	. 28	. 20			
	26-35	. 28	. 05			
	>35	---	---			
218:						
Sehorn--------------	0-5	. 28	. 28	2	4	86
	5-9	. 28	. 28			
	9-19	. 28	. 24			
	19-26	. 28	. 20			
	26-35	. 28	. 05			
	>35	---	---			
Altamont------------	0-3	. 24	. 24	4	4	86
	3-9	. 24	. 24			
	9-23	. 24	. 24			
	23-35	. 24	. 24			
	35-43	. 24	. 24			
	43-49	. 24	. 24			
	>49	---	---			
220, 221:						
Altamont	0-3	. 24	. 24	4	4	86
	3-9	. 24	. 24			
	9-23	. 24	. 24			
	23-35	. 24	. 24			
	35-43	. 24	. 24			
	43-49	. 24	. 24			
	>49	---	---			
230:						
Corning------------	0-4	. 24	. 28	3	4	86
	4-9	. 24	. 28			
	9-20	. 20	. 24			
	20-31	. 20	. 24			
	31-39	. 24	. 43			
	39-52	. 10	. 49			
	52-60	. 10	. 49			
232:						
Maywood-------------	0-16	. 20	. 37	5	6	48
	16-22	. 20	. 37			
	22-41	. 20	. 37			
	41-57	. 43	. 43			
	57-60	. 28	. 28			
233:						
Eastpark------------	0-7	. 32	. 32	5	4	86
	7-15	. 24	. 28			
	15-26	. 10	. 24			
	26-45	. 05	. 28			
	45-54	. 32	. 43			
	54-60	. 05	. 28			

Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
	In					
241:						
Contra Costa	0-3	. 37	. 37	2	6	48
	3-8	. 28	. 28			
	8-16	. 28	. 28			
	16-28	. 24	. 24			
	28-35	. 20	. 28			
	>35	---	---			
Altamont	0-3	. 24	. 24	4	4	86
	3-9	. 24	. 24			
	9-23	. 24	. 24			
	23-35	. 24	. 24			
	35-43	. 24	. 24			
	43-49	. 24	. 24			
	>49	---	---			
253:						
Millsholm-	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Altamont-----------	0-3	. 24	. 24	4	4	86
	3-9	. 24	. 24			
	9-23	. 24	. 24			
	23-35	. 24	. 24			
	35-43	. 24	. 24			
	43-49	. 24	. 24			
	>49	---	---			
Rock outcrop-	0-60	---	---	---	8	0
$255 \text { : }$						
Millsholm-----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Rock outcrop--	0-60	---	---	---	8	0
257:						
Millsholm-----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Capay---------------	0-4		. 24	5	4	86
	4-11	. 24	. 24			
	11-23	. 24	. 24			
	23-30	. 24	. 24			
	30-43	. 24	. 24			
	43-58	. 24	. 24			
	58-74	. 24	. 24			
	74-90	. 24	. 24			
	90-102	. 24	. 24			
261:						
Millsholm-----------	0-2		. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
	In					
329:						
Sehorn--------------	0-5	. 28	. 28	2	4	86
	5-9	. 28	. 28			
	9-19	. 28	. 24			
	19-26	. 28	. 20			
	26-35	. 28	. 05			
	>35	---	---			
Millsholm-----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Altamont------------	0-3	. 24	. 24	4	4	86
	3-9	. 24	. 24			
	9-23	. 24	. 24			
	23-35	. 24	. 24			
	35-43	. 24	. 24			
	43-49	. 24	. 24			
	>49	---	---			
330:						
Millsholm----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Contra Costa	0-3	. 37	. 37	2	6	48
	3-8	. 28	. 28			
	8-16	. 28	. 28			
	16-28	. 24	. 24			
	28-35	. 20	. 28			
	>35	---	---			
331:						
Sehorn--------------	0-5	. 28	. 28	2	4	86
	5-9	. 28	. 28			
	9-19	. 28	. 24			
	19-26	. 28	. 20			
	26-35	. 28	. 05			
	>35	---	---			
Millsholm-----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Rock outcrop-	0-60	---	---	--	8	0
332:						
Millsholm----------	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			
Rock outcrop-------334 :	0-60	---	---	---	8	0
334:Millsholm-	0-2	. 37	. 37	1	6	48
	2-8	. 37	. 37			
	8-14	. 32	. 37			
	>14	---	---			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf	T		
	In					
347, 348:						
Boar----------------	0-5	. 28	. 28	5	6	48
	5-12	. 28	. 28			
	12-20	. 28	. 28			
	20-37	. 28	. 28			
	37-56	. 28	. 28			
	56-75	. 28	. 28			
Sleeper-------------	0-5	. 32	. 32	3	4	86
	5-9	. 32	. 32			
	9-19	. 32	. 32			
	19-35	. 32	. 32			
	35-53	. 32	. 32			
	>53	---	---			
350:						
Haploxererts--------	0-5	. 28	. 32	3	4	86
	5-15	. 20	. 32			
	15-28	. 17	. 24			
	28-39	. 15	. 32			
	39-52	. 15	. 37			
	>52	---	---			
355:						
Venado--------------	0-3	. 32	. 32	5	4	86
	3-13	. 32	. 32			
	13-30	. 32	. 32			
	30-38	. 32	. 32			
	38-53	. 32	. 32			
	53-61	. 32	. 32			
	61-69	. 32	. 32			
360:						
Bearvalley----------	0-5	. 15	. 24	5	4	86
	5-20	. 10	. 24			
	20-34	. 10	. 24			
	34-60	. 05	. 17			
	60-75	. 05	. 17			
365:						
Leesville-----------	0-3	. 20	. 28	5	4	86
	3-16	. 20	. 28			
	16-21	. 20	. 28			
	21-30	. 05	. 20			
	30-46	. 05	. 17			
	46-60	. 05	. 17			
366:						
Leesville-----------	0-3	. 20	. 28	5	4	86
	3-16	. 20	. 28			
	16-21	. 20	. 28			
	21-30	. 05	. 20			
	30-46	. 05	. 17			
	46-60	. 05	. 17			
370: \|						
Livermore-----------	0-7	. 10	. 24	5	4	86
	7-19	. 10	. 28			
	19-41	. 10	. 28			
	41-63	. 05	. 24			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name	Depth	Erosion factors			Wind erodibility group	Wind erodibility index
		- \|				
		K	Kf	T		
	In					
545:Henneke						
	0-1	---	---	2	3	86
	1-4	. 32	. 37			
	4-7	. 15	. 28			
	7-16	. 15	. 28			
	>16	---	---			
Montara--------------	0-6	. 20	. 28	1	3	86
	$6-10$	. 15	. 28			
	>10	---	---			
Rock outcrop--------548, 549 :	0-60	---	---	---	8	0
$\text { 548, } 549:$   Henneke-	0-1	---	---	2	3	86
	1-4	. 32	. 37			
	4-7	. 15	. 28			
	7-16	. 15	. 28			
	>16	---	---			
Okiota--------------	0-5	. 32	. 37	1	6	48
	5-8	. 24	. 32			
	8-15	. 15	. 20			
	>15	---	---			
557 :						
Neuns -	0-2	---	---	2	5	56
	2-7	. 10	. 24			
	7-15	. 10	. 24			
	15-29	. 10	. 24			
	>29	---	---			
Bamtush-			---	5	5	56
	1-9	. 10	. 37			
	9-25	. 10	. 37			
	25-39	. 10	. 32			
	39-49	. 10	. 32			
	49-61	. 10	. 32			
	61-68	. 20	. 37			
Speaker-	0-1	---	---	3	5	56
	1-10	. 20	. 32			
	10-17	. 20	. 32			
	17-26	. 20	. 32			
	>26	---	---			
564:						
Fouts-	0-6	. 24	. 37	2	5	56
	6-12	. 10	. 24			
	12-18	. 10	. 24			
	18-26	. 10	. 24			
	>26	---	---			
Yorkville	0-2	. 32	. 32	5	4	86
	2-15	. 24	. 24			
	15-40	. 24	. 24			
	40-55	. 24	. 24			
	55-60	. 32	. 32			
	$>60$	---	---			

Table 24.--Erosion Properties of the Soils--Continued


Table 24.--Erosion Properties of the Soils--Continued

Map symbol and soil name		Erosion factors			Wind erodibility group	Wind erodibility index
		K	Kf			
				T		
	Depth					
	In					
592 :						
Goulding-------------------- \|	0-1	---	---	1	5	56
,	1-4	. 17	. 28			
,	4-8	. 10	. 28			
,	8-13	. 10	. 28			
	>13	---	---			
Sheetiron-------------------- \|	0-1	---	---	2	3	86
	1-4	. 15	. 24			
,	4-9	. 10	. 24			
\|	9-18	. 10	. 24			
\|	18-30	. 05	. 20			
	>30	---	---			
596:						
Yollabolly------------------ \|	0-2	. 10	. 24	1	5	56
,	2-6	. 10	. 24			
	6-17	. 10	. 24			
	>17	---	---			
Rock outcrop----------------- \|	0-60	---	---	--	8	0
Freezeout------------------- \|	0-1	---	---	2	3	86
I	1-6	. 10	. 24			
	6-17	. 10	. 24			
	17-26	. 10	. 24			
	>26	---	---			
597:						
Yollabolly------------------ \|	0-2	. 10	. 24	1	5	56
	2-6	. 10	. 24			
	6-17	. 10	. 24			
	>17	---	---			
Freezeout-------------------	0-1	---	---	2	3	86
	1-6	. 10	. 24			
	6-17	. 10	. 24			
	17-26	. 10	. 24			
	>26	---	---			
599, 600: \|						
Freezeout------------------- \|	0-1	---	---	2	3	86
	1-6	. 10	. 24			
,	6-17	. 10	. 24			
	17-26	. 10	. 24			
	>26	---	---			
Yollabolly------------------ \|	0-2	. 10	. 24	1	5	56
	2-6	. 10	. 24			
	6-17	. 10	. 24			
	>17	---	---			
$610:$						
Neuns----------------------- \|	0-2	---	---	2	5	56
	2-7	. 10	. 24			
\|	7-15	. 10	. 24			
	15-29	. 10	. 24			
	>29	---	---			

Table 24.--Erosion Properties of the Soils-Continued


Table 25.--Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)







## Table 26.--Water Features

(See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)


Table 26.--Water Features--Continued

Map symbol and soil name	$\mid$	\| Month	Water table	Ponding			Flooding			
	\| Hydro-			Upper \| Lower	\|Surface		Duration	\| Frequency	Duration	Frequency
	\|logic		limit \| limit	water						
	\|group		\|		depth					
			-							
	,		Ft \| Ft	$F t$						
	1		\|							
107:										
Scribner silt loam, occasionally flooded	D		1 \|							
	1 \|	\| January	$\|1.5-3.0\|>6.0$	---	---	None	Brief	Occasional		
	1 \|	\| February	$\|1.5-3.0\|>6.0$	--- \|	---	None	Brief	Occasional		
	1 \|	$\mid$ March	$\|1.5-3.0\|>6.0$	---	---	None	Brief	Occasional		
	1 \|	\|April	$\|1.5-3.0\|>6.0$	--- \|	---	None	Brief	Occasional		
	1 \|	\| December	$\|1.5-3.0\|>6.0$	- - -	---	None	Brief	Occasional		
	,		1	\|						
108:										
Scribner silt loam-----------------------	\| D		1 \|							
	1 \|	\| January	$\|1.5-3.0\|>6.0$	--- \|	-	None	Brief	Rare		
	1 \|	\| February	$\|1.5-3.0\|>6.0$	---	---	None	Brief	Rare		
	1 \|	\| March	$\|1.5-3.0\|>6.0$	--- \|	---	None	Brief	Rare		
	1 \|	\| April	$\|1.5-3.0\|>6.0$	---	---	None	Brief	Rare		
	1 \|	\| December	$\|1.5-3.0\|>6.0$	---	---	None	Brief	Rare		
	1		\|	1 \|						
109:	,		1							
Scribner silt loam, frequently flooded---	\| D		$\mid$ \|	1						
	,	\| January	$\|1.5-3.0\|>6.0$	-	---	None	Long	Frequent		
	1 \|	\| February	$\|1.5-3.0\|>6.0$	--- \|	---	None	Long	Frequent		
	1 \|	\|March	$\|1.5-3.0\|>6.0$	---	---	None	Long	Frequent		
	1 \|	\| April	$\|1.5-3.0\|>6.0$	-	---	None	Long	Frequent		
	1 \|	\| December	$\|1.5-3.0\|>6.0$	---	---	None	Long	Frequent		
	\|		1	\|						
110 :	1		\|	$\mid 1$						
Hustabel sandy loa	B		I							
	\|	\| January	$\|3.0-5.0\|>6.0$	--- \|	---	None	Brief	Rare		
	\|	\| February	$\|3.0-5.0\|>6.0$	---	--	None	Brief	Rare		
	1 \|	\| March	$\|3.0-5.0\|>6.0$	---	---	None	Brief	Rare		
	1 \|	\|April	$\|3.0-5.0\|>6.0$	-	---	None	Brief	Rare		
	1 \|	\| December	$\|3.0-5.0\|>6.0$	---	---	None	Brief	Rare		
	\|		\|	$\mid 1$						
112, 113, 114:	1		\|	$\mid 1$						
Westfan-----	B		\|	\|						
	1 \|	\| January	--- \| ---	---	---	None	Brief	Rare		
	\|	\| February	--- \| ---	--- \|	--	None	Brief	Rare		
	1 \|	$\mid$ March	--- \| ---	--- \|	--	None	Brief	Rare		
	1 \|	\|April	--- \| ---	--- \|	---	None	Brief	Rare		
	1 \|	\| December	\| ---	---	--- \|	---	None	Brief	Rare	
	\|		\|							
$115,116:$	\|		\|	$\mid 1$						
Clear Lake, occasionally flooded-	D		1	1						
	\|	\| January	$\|4.0-6.0\|>6.0$	- \|	---	None	Brief	Occasional		
	\|	\| February	$\|4.0-6.0\|>6.0$	--- \|	---	None	Brief	Occasional		
	1	\| March	$\|4.0-6.0\|>6.0$	--- \|	---	None	Brief	Occasional		
	1	\|April	$\|4.0-6.0\|>6.0$	-- \|	--	None	Brief	Occasional		
	1	\| December	$\|4.0-6.0\|>6.0$	--- \|	---	None	Brief	Occasional		
	1		\|	\|						
117, 118:	,		1	\|						
Clear Lake, frequently flooded	\| D		\|	,						
	\|	\| January	$\|4.0-6.0\|>6.0$	--- \|	---	None	Long	Frequent		
	\|	\| February	$\|4.0-6.0\|>6.0$	--- \|	---	None	Long	Frequent		
	\|	\| March	$\|4.0-6.0\|>6.0$	--- \|	---	None	Long	Frequent		
	\|	\|April	$\|4.0-6.0\|>6.0$	--- \|	---	None	Long	Frequent		
	\|	\| December	$\|4.0-6.0\|>6.0$	--- \|	---	None	Long	Frequent		
	\|		\|	\|						

Table 26.--Water Features--Continued

Map symbol and soil name	$\mid$ \|	Month	Water table		Ponding			Flooding			
	\| Hydro-			Upper \|	Lower	\|Surface	Duration	\| Frequency	Duration	Frequency	
	\|logic		limit	limit	\| water						
	\| group		$\mid$ \|		\| depth				\|		
	1 \|		1		\|		\|		,		
	,		\| Ft	$F t$	\| Ft		\|		\|		
	\|	\|	\|			\|				\|	
124:	1		\|		\|				\|		
Moonbend silt loam, occasionally flooded	c				\|				\|		
	\|	\| January	\| ---		---	\| ---	--- \|	None	Brief	Occasional	
	\|	\| February	--- \|	-	\| ---	--- \|	None	Brief	Occasional		
	1	\| March	--- \|	-	\| ---	--- \|	None	Brief	Occasional		
	1 \|	\|April	--- \|	-	\| ---	--- \|	None	Brief	Occasional		
	1 \|	\| December	---	-	\| ---	--- \|	None	Brief	Occasional		
	\|		,		\|						
125:	I		\|		\|				\|		
Moonbend silt loam----------------------	-		1 \|		\|						
	\|	\| January	--- \|	-	\| ---	--- \|	None	Brief	Rare		
	I	\| February	---	--	\| ---	--- \|	None	Brief	Rare		
	,	$\mid$ March	--	-	\| ---	--- \|	None	Brief	Rare		
	$\mid$ \|	\| April	--- \|	-	\| ---	--- \|	None	Brief	Rare		
		\| December	--- \|	---	\| ---	-	None	Brief	Rare		
			\|		\|						
126:	,		\|		\|						
Moonbend silt loam, frequently flooded---\|	C		1 \|		\|						
	\|	\| January	--- \|	---	\| ---	---	None	Brief	Frequent		
	\|	\| February	--- \|	--	\| ---	--- \|	None	Brief	Frequent		
	\|	$\mid$ March	--- \|		\| ---	--- \|	None	Brief	Frequent		
	I	\| April	--- \|	--	\| ---	--- \|	None	Brief	Frequent		
	\|	\| December	--- \|	---	\| ---	--- \|	None	Brief	Frequent		
	\|				\|				\|		
127, 128:	\|		1 \|		\|				\|		
Mallard, rarely flooded	C		1		\|				\|		
		\| January	\|3.0-5.0		>6.0	\| ---	---	None	Brief	Rare	
	\|	\| February	\|3.0-5.0		>6.0	\| ---	--- \|	None	Brief	Rare	
	\|	$\mid$ March	\|3.0-5.0		>6.0	\| ---	---	None	Brief	Rare	
	I	\|April	\|3.0-5.0		>6.0	\| ---	---	None	Brief	Rare	
	\|	\| December	\|3.0-5.0		>6.0	\| ---	-	None	Brief	\| Rare	
	\|				\|				\|		
129:	\|				\|				\|		
Mallard clay loam, occasionally flooded--	C				\|				,		
	\|	\| January	\|3.0-5.0		>6.0	\| ---	--- \|	None	Brief	\| Occasional	
	\|	\| February	$\|3.0-5.0\|$	>6.0	\| ---	--- \|	None	Brief	\| Occasional		
	\|	\| March	$\|3.0-5.0\|$	>6.0	\| ---	--- \|	None	Brief	Occasional		
	I	\| April	\|3.0-5.0		>6.0	\| ---	--- \|	None	Brief	Occasional	
	\|	\| December	\|3.0-5.0		>6.0	\| ---	--- \|	None	Brief	\| Occasional	
	\|				\|				\|		
130:	\|		\|		\|				\|		
Corbiere silt loam	-				\|				,		
	,	\| January	\|2.0-4.0		>6.0		--- \|	None	Brief	\| Rare	
	I	\| February	\| 2.0-4.0		>6.0	\| ---	---	None	Brief	\| Rare	
	\|	$\mid$ March	\| 2.0-4.0		>6.0	\| ---	--- \|	None	Brief	\| Rare	
	\|	\| April	\| 2.0-4.0		>6.0		--- \|	\| None	Brief	\| Rare	
	,	\| December	\|2.0-4.0		>6.0		--- \|	None	Brief	\| Rare	
	\|		1 \|		\|				\|		
131:	,		\|		\|				\|		
Corbiere silt loam, frequently flooded---	C				\|				\|		
	\|	\| January	\|2.0-4.0		>6.0	\| ---	---	None	Long	\| Frequent	
	\|	\| February	\|2.0-4.0		>6.0	\| ---	--- \|	None	Long	Frequent	
	\|	$\mid$ March	\|2.0-4.0		>6.0	\| ---		--- \|	\| None	Long	Frequent
	\|	\| April	\|2.0-4.0		>6.0		---	None	Long	\| Frequent	
	\|	\| December	\|2.0-4.0		>6.0		---	None	Long	Frequent	
	1		\|		\|				1		

Table 26.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\| Hydro-			Upper	Lower	\|Surface		Duration	\| Frequency	Duration	Frequency
	\|logic			limit	limit	\| water					
	\| group					\| depth			\|		
							1				
		,	$F t$	$F t$	\| Ft		\|				
	\|	\|	$\mid$ \|		$\mid 1$						
133:Corbiere silt loam, occasionally flooded \| C											
		\| January	$\|2.0-4.0\|$	>6.0	-	---	None	Long	Occasional		
		\| February	\|2.0-4.0		$>6.0$	\| ---	---	None	Long	Occasional	
		\| March	\|2.0-4.0		$>6.0$	---	---	None	Long	Occasional	
		\|April	\|2.0-4.0		>6.0	\| ---	---	None	Long	Occasional	
		\| December	\|2.0-4.0		>6.0	\| ---	---	None	Long	Occasional	
					\|						
$136:$											
Colusa loam----------------------------\|	c		1		\|						
		\| January	\|4.0-6.0		$>6.0$	\| ---	-	None	Brief	Rare	
		\| February	$\|4.0-6.0\|$	$>6.0$	\| ---	---	None	Brief	Rare		
	$\mid$ \|	\| March	$\|4.0-6.0\|$	>6.0		---	None	Brief	Rare		
	$\mid$ \|	\| April	$\|4.0-6.0\|$	$>6.0$	\| ---	---	None	Brief	Rare		
		\| December	$\|4.0-6.0\|$	>6.0	\| ---	-	None	Brief	Rare		
					\|		\|				
141:	1	\|			\|						
Myers clay	D				\|		\|				
		\| January	---	---	\| ---	---	None	Brief	Rare		
	$\mid$ \|	\| February	--- \|	---	\| ---	-	None	Brief	Rare		
	1 \|	\| March	--- \|	---	\| ---	---	None	Brief	Rare		
		\| April	--- \|	-	\| ---	---	None	Brief	Rare		
		\| December	--- \|	-	\| ---	---	None	Brief	Rare		
	1		1		\|						
144, 145, 147:					\|						
Hillgate clay loam	D	\|Jan-Dec	-	-	\| ---	---	None	---	None		
					\|						
150:	1	\|	1		\|						
Arbuckle sandy loam	B \|	\|Jan-Dec	--- \|	---	\| ---	---	None	---	None		
					\|						
151:	\|			1		\|		\|			
Arbuckle sandy loam	B	\|Jan-Dec	--- \|	---	\| ---	---	None	-	None		
					\|						
Hillgate loam---------------------------\|	D		--- \|	---	\| ---	---	None	---	None		
152 :											
Arbuckle gravelly loam------------------ \|	B			-		-	None	-	None		
					\|						
155 :		\|			\|		\|				
Alcapay clay-----------------------------1)	D				\|						
		\| January	\|4.0-6.0		$>6.0$		---	None	Brief	Rare	
		\| February	$\|4.0-6.0\|$	>6.0	\| ---	---	None	Brief	Rare		
		\| March	$\|4.0-6.0\|$	$>6.0$	\| ---	---	None	Brief	Rare		
	\|	\| April	\|4.0-6.0		>6.0	\| ---	---	None	Brief	Rare	
		\| December	$\|4.0-6.0\|$	>6.0	\| ---	---	None	Brief	Rare		
	\|					\|					
160:					\|		\|				
Grandbend loam-------------------------\|	B				\|		\|				
		\| January	\|2.5-4.0		$>6.0$	\| ---	---	\| None	Brief	Rare	
	\|	\| February	\|2.5-4.0		>6.0	\| ---	---	\| None	Brief	Rare	
		$\mid$ March	\|2.5-4.0		>6.0	\| ---	-	None	Brief	Rare	
		\|April	\|2.5-4.0		$>6.0$	\| ---	---	\| None	Brief	Rare	
		\| December	\|2.5-4.0		>6.0	\| ---		---	\| None	Brief	Rare
					\|						
170: \|	\|		1		\|		\|				
Vina loam, frequently flooded------------\|	B		1		\|		I				
		\|January	---	---	\| ---	-	None	Long	Frequent		
	\|	\| February	---	---	\| ---		---	None	Long	Frequent	
	\|	$\mid$ March	--- \|	---	\| ---		---	\| None	Long	Frequent	
	\|	\| April	--- \|	---	\| ---		---	None	Long	Frequent	
		\| December	--- \|	---	\| ---		---	\| None	Long	Frequent	
					\|		\|				

Table 26.--Water Features--Continued

Map symbol and soil name	\|	Month	Water table		Ponding			Flooding		
	\|Hydro-			Upper	Lower	\|Surface	Duration	\| Frequency	Duration	Frequency
	\|logic		limit	limit	water					
	\| group				depth					
	1 \|									
	,	\|	Ft \|	$F t$	Ft		\|			
	1 \|	\|								
171:										
Vina loam-------------------------------	-				1		\|			
	1 \|	\| January	--- \|	---	--- \|	---	None	Brief	Rare	
	$\mid$ \|	\| February	--- \|	---	--- \|	---	None	Brief	Rare	
	1 \|	\| March	--- \|	---	--- \|	---	None	Brief	Rare	
	1 \|	\|April	- \|	---	--- \|	---	None	Brief	Rare	
	1 \|	\| December	--	---	---	---	None	Brief	Rare	
	1 \|									
172:										
Vina fine sandy loam, frequently flooded	B				1		\|			
	1 \|	\| January	--- \|	-	\| ---	-	None	Long	Frequent	
	1 \|	\| February	- \|	---	--- \|	---	None	Long	Frequent	
	$\mid$ \|	\| March	- \|	-	--- \|	---	None	Long	Frequent	
	$\mid$ \|	\|April	- \|	-	-- \|	--	None	Long	Frequent	
		\| December	--- \|	---	---	---	None	Long	Frequent	
					1 \|					
174:										
Vina loam, occasionally flooded---------\|	-		\|		1		\|			
	,	\| January	--- \|	--	\| ---		---	None	Brief	Occasional
	1	\| February	---	---	\| ---		---	None	Brief	Occasional
	\|	\| March	\|	---	\| ---		-	None	Brief	Occasional
	,	\| April	- \|	-	- \|	-	None	Brief	Occasional	
	1 \|	\| December	- \|	---	-	-	None	Brief	Occasional	
	$\|\quad\|$				1 \|					
175:										
Tujunga loam, overwash, frequently										
flooded	\| A		\|		1		\|			
	\|	\| January	- \|	-	\| ---	---	None	Long	Frequent	
	\|	\| February	\|	---	\| ---		---	None	Long	Frequent
	I	\| March	\|	---	\| ---		-	None	Long	Frequent
	1 \|	\|April	- \|	-	\| ---		-	None	Long	Frequent
	$\mid$ \|	\| December	- \|	-	-	---	None	Long	Frequent	
	1 \|				\|					
176:										
Columbia fine sandy loam, frequently										
flooded--------------------------------	\| B		\|		\|		\|		\|	
	\|	\| January	- \|	---	\| ---		---	None	Long	Frequent
	\|	\| February	-	---	\| ---		---	None	Long	Frequent
	\|	\| March	- \|	-	\| ---		---	None	Long	Frequent
	$\mid$ \|	\|April	- \|	---	\| ---		---	None	Long	Frequent
	$\mid$ \|	\| December	--- \|	---	\| ---		-	None	Long	Frequent
	$\mid 1$				\|		\|			
177:										
Holillipah loamy sand, channeled--------	\| A						\|			
	\|	\| January	--- \|	---	\| ---		---	None	Long	Frequent
	\|	\| February	--- \|	---	\| ---		---	None	Long	Frequent
	\|	\| March	--- \|	---	\| ---		-	None	Long	Frequent
	\|	\|April	--- \|	---	\| ---		--	None	Long	Frequent
	\|	\| December	--- \|	---	\| ---		---	None	Long	Frequent
	I				$\mid$ \|					
185:					\|		\|			
Riverwash-------------------------------	- D	\| Jan-Dec	0.0-2.0\|	>6.0	\| ---		---	None	Very long	Frequent
	1 \|				\|					
187:	1	\|	\|		\|		,			
Westfan loam, occasionally flooded------	\| B		\|		\|		\|		\|	
	\|	\| January	--- \|	---	\| ---		---	None	Brief	Occasional
	\|	\| February	--- \|	---	\| ---		---	None	Brief	Occasional
	\|	$\mid$ March	--- \|	---	\| ---		---	None	Brief	Occasional
	\|	\|April	--- \|	---	\| ---		---	None	Brief	Occasional
	\|	\| December	--- \|	---	\| ---		---	None	Brief	Occasional
					\|					

Table 26.--Water Features--Continued


Table 26.--Water Features--Continued


Table 26.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding		
	$\begin{aligned} & \text { \| Hydro- } \\ & \text { \|logic } \\ & \text { \| group } \end{aligned}$		Upper   limit	Lower   limit	$\begin{aligned} & \mid \text { Surface } \\ & \mid \text { water } \\ & \mid \text { depth } \end{aligned}$	Duration	\| Frequency	Duration	Frequency	
	$\mid 1$		\| Ft	$F t$	$F t$					
	1 \|		,		\|					
257:										
Capay clay	D		\|		1					
	\|		\| January	\|4.0-6.0	$>6.0$	---	---	None	Brief	Rare
	$\mid$ \|	\| February	\|4.0-6.0	$>6.0$	---	---	None	Brief	Rare	
		\| March	\|4.0-6.0	$>6.0$	---	---	None	Brief	Rare	
		\|April	\|4.0-6.0	$>6.0$	---	---	None	Brief	Rare	
		\| December	\|4.0-6.0	$>6.0$	---	---	None	Brief	Rare	
					1 \|					
261:			\|		1					
Millsholm loam-	D	\|Jan-Dec	---	---	---	---	None	---	None	
Altamont silty clay	D	\| Jan-Dec	---	---	\| ---		---	None	---	None
	\|	\|	-							
270, 271:			\|		1 \|					
Balcom silt loam	B	\| Jan-Dec	\| ---	---	---	---	None	---	None	
					\|					
Ayar clay	D	\| Jan-Dec	\| ---	---	---	---	None	---	None	
$275 \text { : }$										
Goldeagle clay loam	c	\| Jan-Dec	---	---	---	---	None	---	None	
		\|								
Positas gravelly sandy loa	D	\| Jan-Dec	\| ---	---	\| ---	---	None	---	None	
		\|	\|							
Balcom silt loam	B	\| Jan-Dec	\| ---	---	---	---	None	---	None	
	\|	\|								
276:			\|		1					
Positas gravelly sandy loam-	D	\| Jan-Dec	\| ---	---	---	---	None	---	None	
					1					
280:										
Skyhigh gravelly clay loam	C	\| Jan-Dec	---	---	\| ---	---	None	---	None	
		\|	,							
Millsholm loam-	D	\| Jan-Dec	\| ---	---	\| ---	---	None	---	None	
	\|									
300:			\|		,					
Contra Costa loam	c	\| Jan-Dec	\| ---	---	---	---	None	---	None	
					\|					
Millsholm loam-	D	\| Jan-Dec	\| ---	---	---	---	None	---	None	
					,					
$305,311:$		\|	\|		,					
Contra Costa loam-	C	\| Jan-Dec	\| ---	---	\| ---	---	None	---	None	
			\|		\|					
312, 313:		\|	\|		-					
Saltcanyon loam	B		\|		,					
		\| January	\| ---	---	\| ---	---	None	Brief	Rare	
	$\mid$	\| February	\| ---	---	---	---	None	Brief	Rare	
	$\mid$	\| March	\| ---	---	---	---	None	Brief	Rare	
	$\mid$	\|April	\| ---	---	---	---	None	Brief	Rare	
	1	\| December	\| ---	---		---	None	Brief	Rare	
			\|		\|		\|			
315:	$\mid$	\|	\|		\|		\|			
Mallard clay loam	\| C		\| ---	---	\| ---		---	None	---	None
		$1$	\|		\|		\|			
316:	\|		\|		\|					
Hillgate loam-	D	\| Jan-Dec	\| ---	---	\| ---	---	None	---	None	
			\|		\|					
$320 \text { : }$	1		\|		,					
Millsholm loam-	-	\| Jan-Dec	\| ---	---	\| ---		---	None	---	None
			\|		,					
329 :			$\mid$		$\mid$		\|			
Sehorn silty clay-	\| D	\| Jan-Dec	\| ---	---	\| ---		---	\| None	---	None
					$1$					

Table 26.--Water Features-Continued


Table 26.--Water Features--Continued


Table 26.--Water Features--Continued


Table 26.--Water Features--Continued

(See text for the laboratory procedures used to obtain the data in this table. An asterisk (*) following the pedon number indicates that the pedon is at the series modal location.)

Map symbol, soil name, and NSSL pedon number	\| ${ }^{\text {Horizon }}$	Depth	Sand	Silt	Clay	Db   1/3   bar	$\begin{gathered} 1 / 3 \\ \text { bar } \\ \text { water } \end{gathered}$	$\begin{aligned} & 15 \\ & \text { bar } \\ & \text { water } \end{aligned}$	LEP
	\|	In	Pct	Pct	Pct		Pct	Pct	Pct
104:Willows (S93CA-011-008)									
	Ap1	0-5	2.9	45.6	51.5	---	---	17.7	7.5
	Ap2	5-13	2.9	43.8	53.3	1.50	26.0	18.3	8.4
	Bw	13-20	2.9	43.8	53.3	1.49	25.7	18.1	8.4
	Bssy1	20-39	4.2	44.5	51.3	1.46	26.0	18.5	8.2
	Bssy2	39-51	4.5	46.2	49.3	1.47	25.6	19.5	8.0
	Bssy 3	51-59	4.8	46.0	49.2	1.44	28.4	20.0	8.7
	Bssy4	59-72	6.0	38.5	55.5	1.38	31.4	20.8	11.6
	Bssy5	72-80	6.0	46.5	47.5	1.43	30.1	20.4	7.2
	\| Bkssy	80-87	4.0	31.0	65.0	1.37	32.0	22.5	13.1
	,								
112 :									
Westfan (S89CA-011-004)*	Ap1	0-4	43.0	35.8	21.2	1.65	18.4	10.1	3.8
	\| Ap2	4-14	44.3	34.7	21.0	1.47	19.7	9.7	2.8
	ABt	14-24	35.5	40.1	24.4	1.50	21.9	12.7	4.8
	Btk	24-33	53.5	28.1	18.4	1.68	17.7	9.6	2.5
	Ck1	33-43	59.1	26.6	14.3	1.62	16.0	8.3	1.6
	Ck2	43-56	58.1	27.7	14.2	1.52	17.9	8.2	1.7
	C1	56-69	60.1	26.4	13.5	1.50	16.5	7.8	1.5
	C2	69-93	30.2	46.8	23.0	1.45	25.9	14.9	4.2
	2 C	93-98	9.5	52.8	37.7	1.48	-	23.5	4.5
115 :									
Clear Lake (S89CA-011-005)	Ap1	0-4	0.9	39.8	59.3	1.00	43.4	23.1	8.0
	\| Ap2	4-10	1.0	39.4	59.6	1.15	39.7	24.7	8.5
	Bss1	10-20	0.9	38.6	60.0	1.17	42.4	27.2	11.0
	Bss2	20-34	1.3	46.2	52.5	1.31	34.5	23.5	9.9
	Bss3	34-47	1.4	42.7	55.9	1.33	32.9	21.5	10.0
	Bssk1	47-59	1.7	41.7	56.6	1.39	31.2	20.8	10.0
	\| Bssk2	59-79	1.6	42.2	56.2	1.36	31.2	20.7	10.0
	-								
125 :									
Moonbend (S89CA-011-002)*	Ap	0-8	16.0	58.4	25.6	1.31	27.4	12.1	3.0
	Bw1	8-19	6.5	63.6	29.9	1.25	29.8	14.3	4.1
	Bw2	19-33	14.2	51.1	34.7	1.28	28.1	16.4	5.4
	Bw3	33-41	24.9	49.6	25.5	1.31	25.8	13.5	4.6
	BC	41-51	19.6	55.4	25.0	1.25	27.6	13.2	3.9
	C	51-63	17.9	57.6	24.5	1.39	27.5	13.2	3.0
	Ab	63-75	27.1	50.3	22.6	1.40	25.6	12.2	3.5
	$C^{\prime}$	75-85	35.8	46.2	18.0	1.45	--	10.5	4.5
	\|								
130:									
Corbiere (S89CA-011-003)*	Ap	0-6	20.3	53.8	25.9	1.47	25.3	12.6	4.1
	Bw1	6-13	16.8	56.5	26.7	1.60	24.1	13.6	3.6
	Bw2	13-21	5.1	63.0	31.8	1.37	31.3	16.4	5.3
	2Bw	21-33	2.1	46.5	51.4	1.37	29.1	20.0	8.1
	3 Ab	33-46	2.2	48.2	49.6	1.35	30.0	20.1	8.0
	\| 3Bssb1	46-59	2.2	46.4	51.4	1.44	27.2	19.8	8.1
	\| 3Bssb2	59-73	2.5	43.0	54.5	1.43	27.8	20.0	8.4
	3 C 1	73-94	1.5	37.0	61.5	1.40	---	21.3	8.5
	3 C 2	94-114	1.2	32.6	66.2	1.40	---	---	8.5

Table 27.--Physical Analyses of Selected Soils--Continued

Map symbol, soil name, and NSSL pedon number		Depth	Sand	Silt	Clay	Db   1/3   bar	$\begin{gathered} 1 / 3 \\ \text { bar } \\ \text { water } \end{gathered}$	$15$ bar   water	LEP	
	1	In	Pct	Pct	Pct		Pct	Pct	Pct	
$\begin{aligned} & \text { 136: } \\ & \text { Colusa (S89CA-011-001)* } \end{aligned}$	\|									
	\| A	0-2	42.3	43.9	13.8	1.69	19.8	9.5	2.7	
	Btn1 \|	2-9	38.4	43.8	17.8	1.49	23.6	11.4	3.7	
	Btn2	9-19	44.3	39.6	16.1	1.47	22.4	10.4	3.1	
	Btn3	19-25	42.4	39.5	18.1	1.46	23.2	10.7	3.7	
	\| Btn4	25-35	41.4	41.1	17.5	1.43	23.0	11.4	3.2	
	\| Btn5	35-52	44.0	39.4	16.6	1.41	23.7	11.0	3.9	
	\| Bn1	52-64	57.4	29.6	13.0	1.48	23.1	9.4	2.8	
	\| Bn2	64-79	62.2	25.4	12.4	1.49	21.2	8.7	2.4	
	\|									
145 :	\|									
Hillgate (S89CA-011-006)*	A1	0-3	43.3	38.8	17.9	1.46	24.1	7.8	2.0	
	A2	3-11	43.2	37.3	19.5	1.58	16.5	7.1	0.9	
	\| A3	11-19	42.7	35.9	21.4	1.70	15.9	7.8	1.7	
	\| 2Bt1	19-37	30.4	27.1	42.5	1.55	21.7	16.3	7.2	
	\| 2Bt2	37-52	32.6	31.0	36.4	1.52	23.4	14.6	6.8	
	\| 2Bt3	52-62	33.7	31.7	34.6	1.53	23.0	15.4	6.7	
	\| $2 \mathrm{Bt4}$	62-72	36.1	29.8	34.1	1.50	24.8	15.4	5.7	
204:	I									
Capay (S93CA-011-005)	A1	0-4	3.8	36.9	59.3	1.32	32.8	22.2	10.9	
	A2	4-11	3.0	35.7	61.3	1.33	32.2	21.0	11.8	
	Bss1	11-23	3.2	35.2	61.6	1.35	32.2	20.7	10.7	
	Bss2	23-30	3.0	34.1	62.9	1.32	33.1	21.9	11.3	
	\| Bss3	30-43	3.0	34.3	62.7	1.28	34.6	22.4	12.8	
	\| Bss4	43-58	3.3	33.6	63.1	1.30	33.3	22.2	12.5	
	Bss5	58-74	3.6	33.3	63.1	1.31	34.3	22.4	12.2	
	Bss6	74-90 \|	4.0	33.5	62.5	1.31	34.8	22.2	13.2	
	Bss7	90-102	3.7	34.7	61.6	1.28	34.2	21.7	14.0	
	$\mid$ \|									
215 :	1 \|									
Altamont (S93CA-011-004)	A		5.4	41.9	52.7	1.33	27.1	18.4	9.0	
	Bw	3-9	5.3	40.5	54.2	1.41	25.3	18.9	9.3	
	Bss1	9-23	5.1	40.9	54.0	1.46	24.0	19.1	9.2	
	Bss2	23-35	5.5	42.4	52.1	1.44	26.0	19.7	8.5	
	BC1	35-43	7.1	47.9	45.0	1.26	34.1	19.1	6.3	
	BC2	43-49	8.1	50.9	41.0	1.27	29.8	18.1	3.7	
	Cr	>49	---	---	---	---	---	---	---	
	\|									
Sehorn (S93CA-011-002)	A	0-5	6.1	40.5	53.4	1.25	29.0	19.7	12.3	
	Bw	5-9	5.8	40.3	53.9	1.39	28.6	18.5	9.4	
	Bss1	9-19	5.9	43.3	50.8	1.34	31.1	18.7	9.9	
	Bss2	19-26	6.9	46.6	46.5	1.31	33.1	18.7	5.1	
	BC	26-35	9.5	48.0	42.5	1.20	36.3	18.6	3.2	
	R	>35	---	---	---	---	---	---	---	

(See text for the laboratory procedures used to obtain the data in this table. An asterisk (*) following the pedon number indicates that the pedon is at the series modal location.)


Table 28.--Chemical Analyses of Selected Soils--Continued

| Map symbol, soil name, and NSSL pedon number | \|Horizon| | Depth | Organic matter | pH <br> 1:1 <br> water | $\begin{gathered} \text { CEC } \\ \text { NH40Ac } \\ \text { pH } 7 \end{gathered}$ | SAR | EC | $\begin{aligned} & \text { Calcium } \\ & \text { carbonate } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | In | Pct | Pct | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ |  | $d S / m$ | Pct |
|  |  |  |  |  |  |  |  |  |
| 136: |  |  |  |  |  |  |  |  |
| Colusa (S89CA-011-001)* | A | 0-2 | 0.94 | 9.3 | 15.6 | 79 | 8.9 | 1 |
|  | Btn1 | 2-9 | 0.34 | 10.2 | 18.7 | 75 | 6.8 | 1 |
|  | Btn2 | 9-19 | 0.22 | 10.5 | 17.7 | 166 | 9.8 | 1 |
|  | Btn 3 | 19-25 | 0.22 | 10.5 | 18.9 | 116 | 6.9 | 1 |
|  | Btn4 | 25-35 | 0.18 | 10.6 | 19.4 | 97 | 7.0 | 1 |
|  | Btn5 | 35-52 | 0.17 | 10.5 | 20.5 | 54 | 3.9 | 1 |
|  | Bn 1 | 52-64 | 0.11 | 10.3 | 16.0 | 33 | 1.2 | 1 |
|  | Bn2 | 64-79 | 0.11 | 10.0 | 15.0 | 27 | 1.3 | 1 |
|  |  |  |  |  |  |  |  |  |
| 145: |  |  |  |  |  |  |  |  |
| Hillgate (S89CA-011-006)* | A1 | 0-3 | 3.47 | 6.0 | 14.2 | 0 | 0.8 | 0 |
|  | A2 | 3-11 | 0.60 | 6.1 | 12.8 | 1 | 0.2 | 0 |
|  | A3 | 11-19 | 0.43 | 6.1 | 12.3 | 1 | 0.1 | 0 |
|  | $2 \mathrm{Bt1}$ | 19-37 | 0.50 | 6.8 | 28.0 | 2 | 0.2 | 0 |
|  | 2 Bt 2 | 37-52 | 0.29 | 7.8 | 26.7 | 2 | 0.2 | 0 |
|  | 2 Bt 3 | 52-62 | 0.17 | 7.9 | 30.8 | 4 | 0.2 | 0 |
|  | 2Bt4 | 62-72 | 0.17 | 8.1 | 30.2 | 4 | 0.2 | 0 |
|  |  |  |  |  |  |  |  |  |
| 204: |  |  |  |  |  |  |  |  |
| Capay (S93CA-011-005) | A1 | 0-4 | 2.27 | 6.9 | 43.4 | 0 | 0.1 | 0 |
|  | A2 | 4-11 | 1.26 | 7.2 | 45.8 | 0 | 0.1 | 0 |
|  | Bss1 | 11-23 | 1.10 | 7.6 | 45.7 | 0 | 0.1 | 0 |
|  | Bss2 | 23-30 | 1.06 | 8.1 | 46.1 | 0 | 0.1 | 0 |
|  | Bss3 | 30-43 | 0.85 | 8.3 | 45.9 | 3 | 0.1 | 0 |
|  | Bss4 | 43-58 | 0.60 | 8.1 | 45.9 | 5 | 0.5 | 1 |
|  | Bss5 | 58-74 | 0.49 | 8.5 | 46.8 | 4 | 0.4 | 1 |
|  | Bss6 | 74-90 | 0.51 | 8.6 | 46.1 | 5 | 0.4 | 0 |
|  | Bss7 | 90-102 | 0.48 | 8.5 | 45.4 | 4 | 0.3 | 0 |
|  |  |  |  |  |  |  |  |  |
| 215: |  |  |  |  |  |  |  |  |
| Altamont (S93CA-011-004) | A | 0-3 | 1.77 | 7.3 | 46.7 | 0 | 1.0 | 0 |
|  | Bw | 3-9 | 0.98 | 7.2 | 46.8 | 0 | 1.0 | 0 |
|  | Bss1 | 9-23 | 0.84 | 7.4 | 46.6 | 0 | 1.0 | 0 |
|  | Bss2 | 23-35 | 0.82 | 7.7 | 46.3 | 0 | 1.0 | 0 |
|  | BC1 | 35-43 | 0.60 | 7.9 | 45.3 | 0 | 1.0 | 0 |
|  | BC2 | 43-49 | 0.57 | 8.0 | 44.3 | 0 | 1.0 | 0 |
|  | Cr | >49 | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |
| Sehorn (S93CA-011-002) | A | 0-5 | 1.63 | 7.2 | 44.5 | 0 | 0.0 | 0 |
|  | Bw | 5-9 | 1.05 | 7.2 | 45.1 | 0 | 0.0 | 0 |
|  | Bss1 | 9-19 | 0.82 | 7.2 | 44.5 | 0 | 0.0 | 0 |
|  | Bss2 | 19-26 | 0.76 | 7.4 | 45.2 | 0 | 0.0 | 0 |
|  | BC | 26-35 | 0.46 | 7.7 | 44.6 | 0 | 0.0 | 0 |
|  | R | >35 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |  |

## Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (USDA, 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 29 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soilforming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Xeralf (Xer, meaning dry, plus alf, from Alfisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Haploxeralfs (Hapl, meaning minimal horizonation, plus xeralf, the suborder of the Alfisols that has a xeric moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Haploxeralfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle size, mineral content, soil temperature regime, soil depth, and reaction. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, superactive, thermic Typic Haplxeralfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

## Soil Series and Their Morphology

In this section, each soil series recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each series. A pedon, a small three-dimensional area of soil, that is typical of the series in the survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (USDA, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (USDA, 1999) and in "Keys to Soil Taxonomy" (USDA, 1998). Unless otherwise indicated, colors in the descriptions are for dry soil. Following the pedon description is the range of important characteristics of the soils in the series.

The map units of each soil series are described in the section "Detailed Soil Map Units."

## Alcapay Series

The Alcapay series consists of very deep, somewhat poorly drained soils in basins. These soils are artificially drained. They formed in alluvium derived from mixed sources. Slope is 0 to 1 percent. The annual precipitation is 14 to 16 inches, and the mean annual air temperature is 58 to 62 degrees $F$.

## Table 29.--Classification of the Soils

(An asterisk in the first column indicates a taxadjunct to the series. See text for a description of those characteristics that are outside the range of the series.)

Soil name	Family or higher taxonomic class
Alcapay-	Fine, smectitic, thermic Sodic Haploxererts
Altamont------	Fine, smectitic, thermic Aridic Haploxererts
Arand	Loamy-skeletal, mixed, superactive, nonacid, thermic Mollic Xerofluvents
Arbuckle-------	Fine-loamy, mixed, superactive, thermic Typic Haploxeralfs
Ayar---------	Fine, smectitic, thermic Typic Haploxererts
Balcom-	Fine-loamy, mixed, superactive, thermic Typic Calcixerepts
Bamtush-------	Loamy-skeletal, mixed, superactive, mesic Ultic Palexeralfs
Bearvalley----	Loamy-skeletal, magnesic, thermic Pachic Haploxerolls
Boar-----------	Fine, smectitic, thermic Mollic Haploxeralfs
Buttes---------	Loamy-skeletal, mixed, superactive, thermic Mollic Haploxeralfs
Capay--------	Fine, smectitic, thermic Typic Haploxererts
*Capay-	Very-fine, smectitic, thermic Typic Haploxererts
Clear Lake	Fine, smectitic, thermic Xeric Endoaquerts
Columbia------	Coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvents
Colusa	Coarse-loamy, mixed, superactive, thermic Typic Natrixeralfs
Contra Costa----	Fine, mixed, superactive, thermic Mollic Haploxeralfs
Corbiere------	Fine, mixed, superactive, thermic Cumulic Vertic Endoaquolls
Corning	Fine, mixed, active, thermic Typic Palexeralfs
Corval	Fine-silty, mixed, superactive, thermic Pachic Haploxerolls
Dubakella	Clayey-skeletal, magnesic, mesic Mollic Haploxeralfs
Eastpark	Clayey-skeletal, magnesic, thermic Mollic Haploxeralfs
Endoaquolls----	Endoaquolls
Etsel----------	Loamy-skeletal, mixed, active, nonacid, mesic Lithic Xerorthents
Fouts	Clayey-skeletal, mixed, superactive, thermic Ultic Argixerolls
Freezeout------	Loamy-skeletal, mixed, superactive, frigid Humic Dystroxerepts
Goldeagle-----	Fine, mixed, superactive, thermic Typic Haploxeralfs
Goulding-	Loamy-skeletal, mixed, active, mesic Lithic Dystroxerepts
Grandbend-	Coarse-loamy, mixed, superactive, thermic Oxyaquic Haploxerolls
Guenoc-------	Fine, kaolinitic, thermic Typic Rhodoxeralfs
Haploxererts--	Haploxererts
Henneke------	Clayey-skeletal, magnesic, thermic Lithic Argixerolls
Hillgate	Fine, smectitic, thermic Typic Palexeralfs
Holillipah	Sandy, mixed, thermic Typic Xerofluvents
Hustabel	Coarse-loamy, mixed, superactive, thermic Cumulic Haploxerolls
Leesvill	Fine-loamy over sandy or sandy-skeletal, magnesic, thermic Pachic Haploxerolls
Livermore	Loamy-skeletal, mixed, superactive, thermic Typic Haploxerolls
Mallard	Fine, mixed, superactive, thermic Pachic Argixerolls
Marpa	Loamy-skeletal, mixed, active, mesic Ultic Haploxeralfs
Mayacama	Loamy-skeletal, mixed, active, mesic Typic Dystroxerepts
Maymen	Loamy, mixed, active, mesic Lithic Dystroxerepts
Maywood	Coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerofluvents
Millsholm-----	Loamy, mixed, superactive, thermic Lithic Haploxerepts
Montara	Loamy, magnesic, thermic Lithic Haploxerolls
Moonbend	Fine-silty, mixed, superactive, thermic Pachic Haploxerolls
Myers	Fine, smectitic, thermic Aridic Haploxererts
Neuns	Loamy-skeletal, mixed, active, mesic Typic Dystroxerepts
Okiota---------	Clayey, magnesic, thermic Lithic Argixerolls
*Posita	Clayey-skeletal, smectitic, thermic Mollic Palexeralfs
Saltcanyon----	Fine-loamy, mixed, superactive, thermic Pachic Argixerolls
Scribner------	Fine-loamy, mixed, superactive, thermic Cumulic Endoaquolls
Sehorn	Fine, smectitic, thermic Aridic Haploxererts
Sheetiron------	Loamy-skeletal, mixed, active, mesic Typic Dystroxerepts
Skyhigh-------	Fine, smectitic, thermic Mollic Haploxeralfs
Sleeper-	Fine, smectitic, thermic Mollic Haploxeralfs
Snook	Loamy, mixed, superactive, nonacid, thermic Lithic Xerorthents
Speaker--------	Fine-loamy, mixed, active, mesic Ultic Haploxeralfs
*Squawrock-	Clayey-skeletal, mixed, superactive, thermic Typic Haploxeralfs
Stonyford	Loamy, mixed, superactive, thermic Lithic Mollic Haploxeralfs
Tujunga-	Mixed, thermic Typic Xeropsamments
Vena	Very-fine, magnesic, thermic Aridic Endoaquerts

Table 29.--Classification of the Soils--Continued

Soil name	Family or higher taxonomic class
Vina--	Coarse-loamy, mixed, superactive, thermic Pachic Haploxerolls
Westfan-	Fine-loamy, mixed, superactive, thermic Pachic Haploxerolls
Willows	Fine, smectitic, thermic Sodic Endoaquerts
Yollabolly-	Loamy-skeletal, mixed, active, acid, frigid Lithic Xerorthents
Yorkville-	Fine, mixed, superactive, thermic Typic Argixerolls

Taxonomic class: Fine, smectitic, thermic Sodic Haploxererts

## Typical Pedon

Alcapay clay, 0 to 1 percent slopes, fallow. When described on April 25, 1988, the soil was dry to a depth of 5 inches and moist below that depth.
Ap1-0 to 5 inches; olive gray (5Y 4/2) clay, dark brown (10YR 3/3) moist; massive; hard, friable, sticky and plastic; many very fine roots; few fine interstitial pores; many fine prominent yellowish red (5YR 4/6) accumulations of iron; slightly acid (pH 6.1); abrupt wavy boundary.
Ap2—5 to 10 inches; brown (10YR 5/3) clay, brown (10YR 4/3) moist; strong coarse prismatic structure; very hard, friable, sticky and plastic; many very fine roots; few very fine interstitial pores; common fine distinct yellowish brown (10YR 5/6) and pale brown (10YR 6/3) accumulations of iron; moderately alkaline ( pH 8.0); clear wavy boundary.

Bw-10 to 24 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; strong coarse prismatic structure; very hard, firm, sticky and plastic; few very fine roots; few very fine tubular pores; white crystals in seams and accumulations; many fine distinct very pale brown (10YR 7/4) accumulations of iron; moderately alkaline ( pH 8.2); clear wavy boundary.
Bssz-24 to 35 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; common very fine tubular pores; white crystals in seams and accumulations; slickensides tilted 60 degrees from vertical; effervescent; common fine lime accumulations in filaments; few fine faint dark brown (10YR 3/3) accumulations of iron; slightly alkaline ( pH 7.8 ); clear smooth boundary.
Bnz1-35 to 53 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; weak
medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; many very fine tubular pores; white crystals in seams and accumulations; effervescent; few fine lime accumulations in filaments; strongly alkaline ( pH 8.3); clear smooth boundary.

Bnz2—53 to 64 inches; yellowish brown (10YR 5/6) clay, brown (7.5YR 4/4) moist; massive; very hard, friable, sticky and plastic; few very fine tubular pores; white crystals in seams and accumulations; strongly effervescent; many fine rounded lime accumulations in small masses; many manganese accumulations in fine rounded small masses; many fine distinct dark brown (10YR 3/3) accumulations of iron; very strongly alkaline ( pH 8.8).

Type location: Colusa County, California; about 7 miles northwest of Maxwell, California; 4,400 feet south and 5,700 feet east of the northwest corner of section 32, T. 18 N., R. 3 W., MDB\&M; 39 degrees, 22 minutes, 24 seconds north latitude and 122 degrees, 13 minutes, 39 seconds west longitude; USGS Maxwell, California, topographic quadrangle.

## Range in Characteristics

Depth to the Bnz horizon ranges from 10 to 40 inches. Slickensides and pressure faces are common below the plow zone, from a depth of about 10 to 40 inches. Unless irrigated, these soils have cracks 30 to 50 inches deep. The cracks open in May and June and remain open until November. The mean annual soil temperature is 62 to 64 degrees F. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 20 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The Ap horizon has dry color of $10 \mathrm{YR} 4 / 2$ or $5 / 3$ or $5 \mathrm{Y} 4 / 2$ and moist color of $10 \mathrm{YR} 3 / 3$ or $4 / 3$ or $5 \mathrm{Y} 3 / 2$. The texture is clay. Reaction is slightly acid to moderately alkaline.

The Bw and Bssz horizons have dry color of 10YR $5 / 4$ and moist color of $10 Y \mathrm{YR} 3 / 3,3 / 4$, or $4 / 4$. The texture is clay. Reaction is slightly acid to moderately alkaline. Carbonates are segregated in the lower part.

The Bnz horizon has dry color of 10YR $5 / 4$ or $5 / 6$ and moist color of 10 YR $4 / 3$ or $4 / 4$ or 7.5 YR $4 / 4$. The texture is clay. Reaction is strongly alkaline or very strongly alkaline.

Carbonates occur in soft seams. The sodium adsorption ratio is more than 13 , ranging to as high as 50.

## Altamont Series

The Altamont series consists of deep, well drained soils on foothills (figure 12). These soils formed in residuum and colluvium weathered from calcareous sandstone, shale, and schist. Slope ranges from 5 to 50 percent. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is about 60 to 62 degrees $F$.

Taxonomic class: Fine, smectitic, thermic Aridic Haploxererts

## Typical Pedon

Altamont clay, in an area of Altamont-Sehorn complex, 15 to 30 percent slopes, rangeland. When described on September 21, 1993, the soil was dry throughout.
A-0 to 3 inches; light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) silty clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; moderate coarse subangular blocky structure parting to weak fine subangular blocky; hard, firm, sticky and plastic; common very fine roots; common very fine tubular pores; noneffervescent; neutral ( pH 7.3 ); clear smooth boundary.
Bw-3 to 9 inches; light olive brown (2.5Y $5 / 3$ ) silty clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; strong very coarse prismatic structure parting to moderate very coarse angular blocky; very hard, very firm, sticky and plastic; common very fine roots; few very fine discontinuous tubular pores; few prominent patchy pressure faces on peds; noneffervescent; neutral (pH 7.2); abrupt smooth boundary.
Bss1-9 to 29 inches; light olive brown (2.5Y 5/3) silty clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; strong very coarse prismatic structure parting to moderate and strong very coarse angular blocky; very hard, very firm, sticky and plastic; few very fine roots; few very fine discontinuous tubular pores; common prominent discontinuous intersecting slickensides on faces of peds and
common prominent discontinuous pressure faces on peds; noneffervescent; 3 percent gravel; slightly alkaline (pH 7.4); abrupt wavy boundary.
Bss2-29 to 35 inches; light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) silty clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; strong very coarse prismatic structure parting to moderate and strong very coarse angular blocky; very hard, very firm, sticky and plastic; few very fine roots; few very fine discontinuous tubular pores; many prominent discontinuous intersecting slickensides on faces of peds and common prominent discontinuous pressure faces on peds; noneffervescent; 7 percent gravel; slightly alkaline ( pH 7.7 ); clear wavy boundary.
BC1-35 to 43 inches; light olive brown (2.5Y 5/3) very gravelly silty clay, olive brown ( $2.5 \mathrm{Y} 4 / 4$ ) moist; moderate medium subangular blocky structure; hard, firm, sticky and plastic; few very fine roots; few very fine discontinuous tubular pores; noneffervescent; 40 percent gravel; moderately alkaline ( pH 7.9 ); clear wavy boundary.
BC2-43 to 49 inches; light yellowish brown (2.5Y 6/4) very gravelly silty clay, olive brown (2.5Y 4/4) moist; moderate medium subangular blocky structure; hard, firm, sticky and plastic; few very fine roots; few very fine discontinuous tubular pores; noneffervescent; 50 percent gravel; moderately alkaline ( pH 8.0 ); abrupt wavy boundary.
Cr -49 inches; highly fractured and weathered shale.
Type location: Colusa County, California; about 6 miles northwest of Sites, California; 1,500 feet east and 500 feet south of the northwest corner of section 8, T. 7 N., R. 4 W., MDB\&M; 39 degrees, 20 minutes, 44 seconds north latitude and 122 degrees, 19 minutes, 23 seconds west longitude; USGS Sites, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 21 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, is 35 to 60 percent. The depth to weathered shale ranges from 40 to 60 inches.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3$ or $4 / 4$ or $2.5 \mathrm{Y} 5 / 3$ and moist color of $10 \mathrm{YR} 4 / 3,3 / 3,3 / 4$, or $4 / 4$
or $2.5 \mathrm{Y} 4 / 3$. Reaction is slightly acid to moderately alkaline. The texture is clay, silty clay, or clay loam.

The $B$ horizon has dry color of $10 \mathrm{YR} 5 / 3$ or $5 / 4$ or $2.5 \mathrm{Y} 5 / 3$ or $6 / 4$ and moist color of 10YR $4 / 3$ or $4 / 4$ or $2.5 \mathrm{Y} 4 / 3$ or $4 / 4$. The texture is clay, silty clay, or clay loam. In some pedons the lower part of the horizon is very gravelly. Reaction is slightly acid to moderately alkaline.

## Arand Series

The Arand series consists of very deep, somewhat excessively drained soils on flood plains and alluvial fans. These soils formed in coarse textured alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 21 inches, and the mean annual air temperature is 58 to 62 degrees $F$.
Taxonomic class: Loamy-skeletal, mixed, superactive, nonacid, thermic Mollic Xerofluvents

## Typical Pedon

Arand very gravelly sandy loam, 0 to 2 percent slopes, on a northeast-facing slope of 2 percent, under annual grasses and forbs, and at an elevation of 345 feet. When described on September 16, 1992, the soil was moist below a depth of 30 inches.

A-0 to 8 inches; brown (10YR 5/3) very gravelly sandy loam, dark brown (10YR 3/3) moist; strong fine and medium granular structure; soft, very friable, slightly sticky and nonplastic; many very fine roots; many very fine interstitial pores; 40 percent gravel; neutral ( pH 6.9 ); abrupt smooth boundary.
C1-8 to 18 inches; brown (10YR 5/3) very gravelly sandy loam, dark brown (10YR 3/3) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine roots; many very fine interstitial and few fine tubular pores; 45 percent gravel; neutral ( pH 6.8 ); clear smooth boundary.
C2-18 to 24 inches; brown (10YR 5/3) very gravelly sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine roots; many very fine interstitial and few fine tubular pores; 50 percent gravel; neutral ( pH 6.8); abrupt smooth boundary.

C3-24 to 65 inches; brown (10YR 5/3) very gravelly sand, brown (10YR 4/3) moist; massive; loose, nonsticky and nonplastic; few very fine roots; many very fine interstitial and few very fine tubular pores; 70 percent gravel; neutral ( pH 6.8 ).
Type location: Colusa County, California; about 6 miles west of Arbuckle, California; 1,200 feet west and

1,900 feet north of the southeast corner of section 35, T. 14 N., R. 3 W., MDB\&M; 39 degrees, 01 minute, 02 seconds north latitude and 122 degrees, 09 minutes, 21 seconds west longitude; USGS Cortina Creek, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$, and the soil temperature is above 47 degrees $F$ all year. The soil moisture control section, from a depth of 12 to 33 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The content of organic matter decreases irregularly with increasing depth and is assumed to be less than 1 percent on the basis of data from similar soils in similar geomorphic positions. The textural control section is 10 to 40 inches. By weighted average, it has a clay content of 5 to 15 percent and a gravel content of 35 to 50 percent. Reaction is neutral throughout the profile.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3$ and moist color of $10 Y R 3 / 3$. The texture is gravelly sandy loam, gravelly loam, very gravelly sandy loam, or very gravelly loam. The content of clay is 7 to 15 percent.

The C horizon has dry color of $10 \mathrm{YR} 6 / 4,6 / 3,6 / 2$, $5 / 4,5 / 3$, or $5 / 2$ and moist color of 10 YR $4 / 4,4 / 3,4 / 2$, $3 / 4,3 / 3$, or $3 / 2$. The texture is very gravelly loamy sand or very gravelly sand. The content of clay is 7 to 15 percent.

## Arbuckle Series

The Arbuckle series consists of very deep, well drained soils on low terraces (figure 13). These soils formed in alluvium derived from conglomerate and metasedimentary rocks. Slope ranges from 1 to 5 percent. The mean annual precipitation is 14 to 21 inches, and the mean annual air temperature is 57 to 63 degrees $F$.

Taxonomic class: Fine-loamy, mixed, superactive, thermic Typic Haploxeralfs

## Typical Pedon

Arbuckle sandy loam, 1 to 5 percent slopes, under annual grasses and forbs. When described on September 15,1992 , the soil was dry to a depth of 34 inches and slightly moist below that depth.

A1-0 to 4 inches; light yellowish brown (10YR 6/4)
sandy loam, dark yellowish brown (10YR 4/4)
moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and
nonplastic; many very fine roots; many very fine interstitial and few very fine tubular pores; 10 percent gravel; slightly acid (pH 6.2); abrupt smooth boundary.
A2-4 to 10 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; moderate medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial and few very fine tubular pores; 10 percent gravel; slightly acid (pH 6.2); clear smooth boundary.
A3-10 to 17 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine interstitial and few very fine tubular pores; 10 percent gravel; slightly acid ( pH 6.1 ); clear smooth boundary.
Bt1-17 to 26 inches; yellowish brown (10YR 5/4) gravelly sandy loam, dark yellowish brown (10YR $3 / 4$ ) moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; common thin clay films on faces of peds; 25 percent gravel; slightly acid (pH 6.2); clear smooth boundary.

Bt2-26 to 34 inches; yellowish brown (10YR 5/4) gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; few thin clay films on faces of peds; 30 percent gravel; slightly acid ( pH 6.3 ); clear smooth boundary.
Bt3-34 to 44 inches; yellowish brown (10YR 5/4) gravelly loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; slightly hard, firm, sticky and slightly plastic; few very fine roots; common very fine tubular pores; many thin clay films on faces of peds; 30 percent gravel; carbonate pendants on the underside of pebbles; slightly acid (pH 6.3); clear smooth boundary.
BC-44 to 68 inches; yellowish brown (10YR 5/4) very gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; massive; loose when dry and moist, nonsticky and nonplastic when wet; many very fine interstitial pores; 50 percent gravel; carbonate pendants on the underside of pebbles; slightly acid (pH 6.5).

Type location: Colusa County, California; about 6 miles west of Arbuckle, California; 2,100 feet west and

1,200 feet north of the southeast corner of section 35, T. 13 N., R. 3 W., MDB\&M; 39 degrees, 00 minutes, 55 seconds north latitude and 122 degrees, 09 minutes, 32 seconds west longitude; USGS Cortina Creek, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 60 to 65 degrees $F$, and the soil temperature is above 47 degrees $F$ all year. The soil moisture control section, from a depth of 8 to 26 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The content of organic matter is assumed to be less than 1 percent on the basis of data from similar soils in similar geomorphic positions. The solum is more than 40 inches thick.

The A horizon has dry color of $10 \mathrm{YR} 6 / 4,6 / 3$, or $5 / 4$ or 7.5 YR $6 / 4,6 / 3$, or $5 / 4$ and moist color of 10YR $4 / 4$ or $4 / 3$ or $7.5 \mathrm{YR} ~ 6 / 4,5 / 4$, or $4 / 4$. The texture is sandy loam or gravelly loam. The content of rock fragments ranges from 3 to 35 percent. Reaction is slightly acid or neutral.

The Bt1, Bt2, and Bt3 horizons have dry color of 10YR $6 / 4$ or $5 / 4$ or 7.5 YR $6 / 4$ or $5 / 4$ and moist color of 10YR $4 / 4$ or $3 / 4$ or 7.5 YR $4 / 4$ or $3 / 4$. The texture is gravelly loam, gravelly sandy loam, gravelly sandy clay loam, gravelly clay loam, sandy clay loam, or loam. The content of gravel ranges from 3 to 35 percent. The content of clay ranges from 18 to 32 percent, and the content of coarse and very coarse sand is less than 20 percent. Reaction is slightly acid to slightly alkaline, and the horizons are not calcareous.

The BC horizon has dry color of 10 YR $6 / 4,6 / 3,5 / 4$, or $5 / 3$ and moist color of 10 YR $5 / 4,5 / 3,4 / 4$, or $4 / 3$. The texture is stratified gravelly sandy clay loam to very gravelly clay loam. Reaction is slightly acid to slightly alkaline.

## Ayar Series

The Ayar series consists of very deep, well drained soils on hills. These soils formed in residuum weathered from calcareous sandstone, siltstone, and shale. Slope ranges from 5 to 50 percent. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 60 to 63 degrees $F$.
Taxonomic class: Fine, smectitic, thermic Typic Haploxererts

## Typical Pedon

Ayar clay, 5 to 15 percent slopes, in an area of rangeland. When described on October 6, 1989, the
soil was moist to a depth of 9 inches and dry below that depth.

A1-0 to 9 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; extremely hard, friable, sticky and plastic; common very fine roots; few very fine interstitial and tubular pores; disseminated lime and lime occurring in soft masses throughout the horizon; strongly effervescent ( 7 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); slightly alkaline ( pH 7.5); clear smooth boundary.

A2-9 to 25 inches; brown (10YR 4/3) clay, dark brown (10YR $3 / 3$ ) moist; strong coarse prismatic structure; extremely hard, firm, sticky and plastic; many very fine roots; few very fine interstitial and tubular pores; disseminated lime; strongly effervescent ( 9 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); slightly alkaline ( pH 7.5 ); clear smooth boundary.
Bss1-25 to 36 inches; brown (10YR 4/3) clay, dark brown (10YR $3 / 3$ ) moist; strong coarse prismatic structure; extremely hard, firm, sticky and plastic; common very fine roots; many very fine tubular pores; common intersecting slickensides; disseminated lime; strongly effervescent (9 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); slightly alkaline ( pH 7.5 ); clear smooth boundary.
Bss2-36 to 46 inches; brown (10YR 5/3) clay, brown (10YR 4/3) moist; strong fine prismatic structure; extremely hard, friable, moderately sticky and moderately plastic; few very fine roots; common very fine tubular pores; many intersecting slickensides; disseminated lime; strongly effervescent ( 10 percent calcium carbonate, HCl , 1 normal); slightly alkaline ( pH 7.7 ); abrupt smooth boundary.
Bw-46 to 58 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; moderate fine prismatic structure; hard, friable, slightly sticky and plastic; few very fine roots; common very fine tubular pores; disseminated lime and lime occurring in soft seams and soft masses throughout the horizon; violently effervescent (15 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); slightly alkaline ( pH 7.8 ); abrupt smooth boundary.
C-58 to 72 inches; brownish yellow (10YR 6/6) clay loam, yellowish brown (10YR 5/6) moist; massive; hard, very friable, slightly sticky and slightly plastic; few very fine tubular pores; disseminated lime and lime occurring in soft seams and soft masses throughout the horizon; violently effervescent (9 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); slightly alkaline ( pH 7.8 ); abrupt smooth boundary.

Cr-72 inches; weathered, calcareous, fine grained sandstone.

Type location: Colusa County, California; about 6½ miles north-northwest of Sites, California; 110 feet north and 200 feet east of the southwest corner of section 35, T. 18 N., R. 4 W., MBD\&M; 39 degrees, 22 minutes, 00 seconds north latitude and 122 degrees, 16 minutes, 40 seconds west Iongitude; USGS Sites, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 64 to 66 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 21 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, ranges from 40 to 55 percent. The depth to highly weathered bedrock ranges from 60 to 80 inches.

The A horizon has dry color of 10 YR $4 / 3$ and moist color of $10 Y R 3 / 3$ or $3 / 4$. The texture is clay. Reaction is slightly alkaline or moderately alkaline. Effervescence is none to strong.

The Bss horizon has dry color of $10 Y \mathrm{R} 5 / 3$ or $4 / 3$ and moist color of $10 \mathrm{YR} 4 / 3$ or $3 / 3$. The texture is clay. Reaction is slightly alkaline or moderately alkaline. Effervescence is strong to violent.

The Bw horizon has dry color of 10YR 5/4 and moist color of 10YR 4/4. The texture is clay. Reaction is slightly alkaline or moderately alkaline. Effervescence is strong to violent.

The C horizon has dry color of 10YR $6 / 6$ and moist color of $10 \mathrm{YR} 5 / 6$. The texture is clay loam or clay. Reaction is slightly alkaline or moderately alkaline. Effervescence is strong to violent.

## Balcom Series

The Balcom series consists of moderately deep, well drained soils on hills. These soils formed in residuum weathered from soft, interbedded sandstone, siltstone, and shale. Slope ranges from 5 to 75 percent. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 57 to 63 degrees $F$.

Taxonomic class: Fine-loamy, mixed, superactive, thermic Typic Calcixerepts

## Typical Pedon

Balcom silt loam, in an area of Balcom-Ayar
complex, 15 to 30 percent slopes, rangeland; described on November 7, 1989.

A1-0 to 2 inches; light brownish gray (2.5Y 6/2) silt loam, dark grayish brown (2.5Y 4/2) moist; strong medium platy structure; hard, friable, nonsticky and nonplastic; common very fine roots throughout; few very fine and fine tubular pores; common fine rounded soft masses of carbonate; discontinuous violent effervescence $(\mathrm{HCl}, 1$ normal); slightly alkaline (pH 7.5); abrupt smooth boundary.
A2—2 to 11 inches; grayish brown (2.5Y 5/2) silt loam, dark grayish brown (2.5Y 4/2) moist; weak fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine roots throughout; few very fine tubular pores; common fine rounded soft masses of carbonate; discontinuous violent effervescence $(\mathrm{HCl}, 1$ normal); slightly alkaline (pH 7.6); clear smooth boundary.
Bk1—11 to 18 inches; light brownish gray (2.5Y 6/2) silty clay loam, olive brown (2.5Y 4/4) moist; weak fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots throughout; few very fine tubular pores; common fine carbonate threads; discontinuous violent effervescence ( $\mathrm{HCl}, 1$ normal); moderately alkaline ( pH 7.7 ); clear smooth boundary.
Bk2-18 to 33 inches; light brownish gray (2.5Y 6/2) silt loam, olive brown (2.5Y 4/4) moist; weak fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots throughout; few very fine tubular pores; common fine rounded soft masses of carbonate; discontinuous violent effervescence ( $\mathrm{HCl}, 1$ normal); moderately alkaline (pH 7.7); abrupt smooth boundary.
$\mathrm{Cr}-33$ to 46 inches; highly fractured and weathered siltstone with carbonate seams in cracks.

Type location: Colusa County, California; about 9 miles southwest of Williams, California; 1,820 feet south and 1,420 feet west of the northeast corner of section 15, T. 14 N., R. 4 W., MBD\&M; 39 degrees, 04 minutes, 09 seconds north latitude and 122 degrees, 17 minutes, 09 seconds west longitude; USGS Salt Canyon, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 64 to 66 degrees F. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 18 inches, is dry in all parts from May 15 to October 31
and moist in some parts from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 33 inches, is 18 to 34 percent. The depth to paralithic contact of siltstone or shale is 26 to 40 inches.

The A horizon has dry color of $2.5 \mathrm{Y} 6 / 3,6 / 2,5 / 3$, or $5 / 2$ or 10 YR $5 / 3,5 / 2,4 / 3$, or $4 / 2$ and moist color of $2.5 \mathrm{Y} 4 / 3$ or $4 / 2$ or $10 \mathrm{YR} 4 / 3$ or $4 / 2$. The texture is silt loam. Reaction is slightly alkaline or moderately alkaline. Effervescence is slight to violent.

The $B$ horizon has dry color of $2.5 \mathrm{Y} 7 / 2,6 / 4,6 / 3$, $6 / 2,5 / 3$, or $4 / 3$ or 10 YR $6 / 3$ or $4 / 3$ and moist color of $2.5 \mathrm{Y} 5 / 2,4 / 4,4 / 3$, or $4 / 2$. It is silty clay loam or silt loam. Reaction is moderately alkaline. Effervescence is violent. Some pedons have no $B$ horizon but instead have a C horizon with seams of soft, powdery lime.

## Bamtush Series

The Bamtush series consists of very deep, well drained soils on mountain side slopes (figure 14). These soils formed in residuum and colluvium weathered from sedimentary rocks. Slope ranges from 15 to 75 percent. The mean annual precipitation is about 42 inches, and the mean annual air temperature is about 49 degrees $F$.

Taxonomic class: Loamy-skeletal, mixed, superactive, mesic Ultic Palexeralfs

## Typical Pedon

Bamtush very gravelly sandy loam, in a forested area of Bamtush-Marpa complex, 15 to 30 percent slopes. When described on July 18, 1995, the soil was dry throughout.
Oi-0 to 1 inch; forest litter, including pine and fir needles and oak and manzanita leaves.
A-1 to 9 inches; pale brown (10YR 6/3) very gravelly loam, dark brown (10YR 3/3) moist; weak very fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine, common medium, and very few coarse roots; common very fine tubular pores; 50 percent gravel; strongly acid ( pH 5.5 ); clear smooth boundary.
AB—9 to 25 inches; very pale brown (10YR 7/3) very gravelly loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; very few fine and coarse, few medium, and common very fine tubular pores; few thin clay films on faces of peds; 50 percent gravel and 5 percent cobbles; strongly acid ( pH 5.5 ); clear smooth boundary.

Bt1-25 to 39 inches; reddish yellow (7.5YR 6/6) very gravelly clay loam, strong brown (7.5YR 5/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; few fine interstitial pores; few thin clay films on faces of peds; 50 percent gravel; strongly acid ( pH 5.5 ); clear smooth boundary.
Bt2-39 to 49 inches; yellowish red (5YR 5/6) very gravelly sandy clay loam, yellowish red (5YR 4/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; few fine interstitial pores; many thin clay films on faces of peds; 40 percent gravel; strongly acid ( pH 5.5 ); abrupt smooth boundary.
Bw-49 to 61 inches; very pale brown (10YR 7/4) very gravelly sandy clay loam, yellowish brown (10YR 5/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; few fine interstitial pores; 45 percent gravel; strongly acid ( pH 5.5 ); abrupt smooth boundary.
2Bt-61 to 68 inches; reddish yellow (7.5YR 6/6) gravelly clay loam, strong brown (7.5YR 5/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; few fine interstitial pores; few thin clay films on faces of peds; 25 percent gravel; strongly acid ( pH 5.5 ).
Type Iocation: Colusa County, California; about $1 / 5$ mile west of the Old Mill Campground entrance on the south side of Mendocino National Forest Service Road M5, 90 feet up the hill from the fire sign; 2,500 feet east and 700 feet south of the northwest corner of section 28, T. 17 N., R. 7 W., MDB\&M; 39 degrees, 18 minutes, 26 seconds north latitude and 122 degrees, 38 minutes, 38 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The depth to bedrock is more than 60 inches. Reaction is slightly acid to strongly acid throughout the profile. The mean annual soil temperature is 54 to 59 degrees $F$. The 6 - to 20 -inch soil moisture control section is dry in all parts from June 1 to October 31 and moist in some part the rest of the year.

The A horizon has dry color of $10 Y \mathrm{R} 7 / 3,6 / 3,5 / 4$, $5 / 2,4 / 4$, or $4 / 3$ and moist color of 10 YR $4 / 4,4 / 3,3 / 3$, or $3 / 2$. This horizon is very gravelly loam and has 35 to 50 percent rock fragments.

The $\mathrm{Bt}, \mathrm{Bw}$, and 2Bt horizons have dry color of 10YR $7 / 4$; 7.5 YR $6 / 6,5 / 6,5 / 4,4 / 4$; or 5 YR $6 / 6$, or $5 / 6$.

They have moist color of $10 \mathrm{YR} 5 / 4,7.5 \mathrm{YR} 5 / 6$, or 5 YR $4 / 6$. They are very gravelly loam, extremely gravelly loam, very gravelly clay loam, extremely gravelly clay loam, very gravelly sandy clay loam, or extremely gravelly sandy clay loam and have 40 to 70 percent rock fragments.

## Bearvalley Series

The Bearvalley series consists of very deep, somewhat excessively drained soils on alluvial fans. These soils formed in coarse textured alluvium weathered dominantly from serpentinitic rocks. Slope ranges from 2 to 5 percent. The mean annual precipitation is 18 to 20 inches, and the mean annual air temperature is 57 to 61 degrees $F$.
Taxonomic class:Loamy-skeletal, magnesic, thermic Pachic Haploxerolls

## Typical Pedon

Bearvalley gravelly sandy loam, 2 to 5 percent slopes, in an area of rangeland. When described on August 19, 1996, the soil was dry throughout.

A1-0 to 5 inches; dark grayish brown (10YR 4/2) gravelly sandy loam, very dark brown (10YR 2/2) moist; strong very thick platy structure; soft, very friable, slightly sticky and nonplastic; common very fine roots; many very fine interstitial pores; 25 percent gravel; neutral (pH 6.6); abrupt smooth boundary.
A2-5 to 20 inches; dark grayish brown (10YR 4/2) very gravelly sandy loam, very dark brown (10YR 2/2) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine roots; many very fine and fine interstitial pores; 35 percent gravel; neutral (pH 7.2); clear smooth boundary.
A3-20 to 34 inches; brown (10YR 5/3) very gravelly sandy loam, dark brown (10YR 3/3) moist; massive; soft, very friable, slightly sticky and nonplastic; many very fine and fine interstitial pores; 40 percent gravel; slightly alkaline ( pH 7.5 ); abrupt smooth boundary.
2C1-34 to 60 inches; brown (10YR 5/3) very gravelly loamy sand, dark brown (10YR 3/3) moist; massive; loose, slightly sticky and nonplastic; many very fine and fine interstitial pores; 55 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
2C2-60 to 75 inches; brown (10YR 5/3) extremely gravelly loamy sand, dark brown (10YR 3/3) moist; massive; loose, slightly sticky and nonplastic; many very fine and fine interstitial pores; 65
percent gravel; thin discontinuous pendants on the underside of rock fragments; moderately alkaline ( pH 8.3 ).

Type location: Colusa County, California; about 6½ miles southwest of Leesville, California; 1,300 feet east and 200 feet north of the southwest corner of section 33, T. 15 N., R. 5 W., MDB\&M; 39 degrees, 06 minutes, 05 seconds north latitude and 122 degrees, 25 minutes, 20 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 60 to 63 degrees F. Ca to Mg ratios are 1:3 to 1:6. The soil moisture control section, from a depth of 9 to 27 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31.

The A horizon has dry color of $10 Y R 5 / 3,5 / 2$, or $4 / 2$ and moist color of $10 Y R 3 / 3,3 / 2$, or $2 / 2$. The texture is gravelly sandy loam or very gravelly sandy loam. The content of clay ranges from 10 to 18 percent. Reaction is neutral or slightly alkaline. The content of gravel ranges from 15 to 35 percent in the upper part of the horizon and from 35 to 45 percent in the rest of the horizon.

The 2 C horizon has dry color of $10 \mathrm{YR} 5 / 3$ and moist color of $10 \mathrm{YR} 3 / 3$. The texture is very gravelly loamy sand, extremely gravelly loamy sand, or very gravelly coarse sandy loam. The content of gravel ranges from 40 to 65 percent. The content of clay ranges from 5 to 10 percent. Reaction is slightly alkaline or moderately alkaline.

## Boar Series

The Boar series consists of very deep, well drained soils on hills. These soils formed in residuum weathered from sandstone, shale, and siltstone. Slope ranges from 5 to 50 percent. The mean annual precipitation is 18 to 22 inches, and the mean annual air temperature is 55 to 60 degrees $F$.

## Taxonomic class: Fine, smectitic, thermic Mollic Haploxeralfs

## Typical Pedon

Boar loam, in an area of rangeland.
A1-0 to 5 inches; light brownish gray (10YR 6/2) loam, very dark grayish brown (10YR 3/2) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; few very fine
tubular and many very fine interstitial pores; slightly acid; abrupt wavy boundary.
A2—5 to 12 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak coarse and very coarse prismatic structure; hard, friable, slightly sticky and slightly plastic; many very fine roots; common very fine and few fine and medium tubular pores; neutral; clear wavy boundary.
Bt1-12 to 20 inches; dark grayish brown (2.5Y 4/2) clay loam, dark brown (10YR 3/3) moist; weak coarse and very coarse prismatic structure; hard, firm, sticky and plastic; few very fine roots; many very fine and few fine and medium tubular pores; few thin clay films lining pores and bridging mineral grains; 3 percent gravel; neutral; abrupt wavy boundary.
Bt2-20 to 37 inches; variegated olive (5Y5/3) and light olive brown (2.5Y 5/6) clay loam, dark grayish brown (2.5Y 4/2) and light olive brown (2.5Y 5/4) moist; weak coarse prismatic structure; hard, firm, sticky and plastic; many very fine tubular pores; many moderately thick clay films lining pores; 30 percent soft saprolite masses; 7 percent gravel; slightly alkaline; clear wavy boundary.
Bt3-37 to 56 inches; olive gray (5Y 5/2) clay, olive gray (5Y 4/2) moist; weak coarse and very coarse subangular blocky structure; hard, firm, sticky and plastic; few very fine roots; common very fine tubular pores; common moderately thick clay films lining pores; many pressure faces and few slickensides; 25 percent soft saprolite fragments; slightly effervescent; disseminated lime; moderately alkaline; clear wavy boundary.
Btk—56 to 75 inches; olive gray ( $5 \mathrm{Y} 5 / 2$ ) clay loam, gray (5Y 5/1) moist; weak coarse and very coarse subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few very fine roots; few very fine tubular pores; few moderately thick clay films lining pores; common pressure faces; 70 percent soft saprolite fragments; strongly effervescent; disseminated lime; moderately alkaline.
Type location: Lake County, California; about 5 miles north of Lakeport, California; 2,125 feet north and 1,812 feet west of the southeast corner of section 25, T. 15 N., R. 10 W., MDB\&M; 39 degrees, 07 minutes, 10 seconds north latitude and 122 degrees, 54 minutes, 55 seconds west longitude; USGS Lakeport, California, topographic quadrangle.

## Range in Characteristics

The solum 60 inches or more inches thick. The
mean annual soil temperature is 59 to 63 degrees $F$. The soil moisture control section, from a depth of 8 to 24 inches, is dry in all parts from July 1 to October 15 and moist in all parts from December 1 to April 30. Slickensides are not evident in all pedons. Base saturation (sum of cations) is 75 to 95 percent throughout the profile.

The A horizon has dry color of $10 Y \mathrm{R} ~ 5 / 2,5 / 3,5 / 4$, $6 / 2,6 / 3$, or $6 / 4$ and moist color of 10 YR $3 / 2,3 / 3$, or $3 / 4$. The content of organic matter is 0.25 to 1.0 percent below a depth of 10 inches. The texture is loam. The content of clay is 15 to 26 percent. Reaction is slightly acid or neutral.

The Bt horizon has dry color of 10 YR or $5 \mathrm{Y} 4 / 2,4 /$ $3,5 / 2$, or $5 / 3$ or $2.5 \mathrm{Y} 4 / 2,5 / 2$, or $5 / 6$ and moist color of 10 YR or $5 \mathrm{Y} 3 / 1,3 / 2,3 / 3,4 / 1,4 / 2,4 / 3,4 / 4,5 / 1$, or $5 / 2$ or $2.5 \mathrm{Y} 3 / 2,4 / 2,5 / 2$, or $5 / 4$. This horizon is clay loam or clay and has 35 to 45 percent clay. Reaction is neutral to moderately alkaline. Disseminated lime is not evident in all pedons.

## Buttes Series

The Buttes series consists of moderately deep, somewhat excessively drained soils on mountains. These soils formed in residuum and colluvium weathered from conglomerate rocks. Slope ranges from 30 to 50 percent. The mean annual precipitation is 19 to 22 inches, and the mean annual air temperature is 57 to 61 degrees $F$.
Taxonomic class:Loamy-skeletal, mixed, superactive, thermic Mollic Haploxeralfs

## Typical Pedon

Buttes gravelly sandy loam, in an area of ButtesMillsholm complex, 30 to 50 percent slopes, rangeland. When described on August 19, 1996, the soil was dry throughout.
A1-0 to 2 inches; brown (7.5YR 4/3) gravelly sandy loam, dark brown (7.5YR 3/3) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine roots; common fine tubular pores; 20 percent gravel; neutral ( pH 6.8 ); clear wavy boundary.
A2-2 to 7 inches; brown (7.5YR 4/4) gravelly sandy clay loam, dark brown (10YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; common fine and medium tubular pores; 30 percent gravel; neutral (pH 6.8); clear smooth boundary.

Bt—7 to 12 inches; brown (7.5YR 4/4) very gravelly sandy clay loam, brown (7.5YR 4/3) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; common fine and medium and few coarse tubular pores; few clay films between sand grains; 40 percent gravel; neutral ( pH 6.8 ); clear smooth boundary.
BCt-12 to 19 inches; strong brown (7.5YR 4/6) very gravelly sandy clay loam, strong brown (7.5YR 4/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium and few coarse roots; few fine and medium tubular pores; many clay films between sand grains and on faces of peds; 40 percent gravel; neutral (pH 6.8); clear smooth boundary.
C-19 to 24 inches; strong brown (7.5YR 4/6) very gravelly sandy loam, strong brown (7.5YR 4/6) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few fine and medium roots; few fine interstitial pores; many clay films between sand grains; 45 percent gravel; neutral ( pH 7.0 ); clear smooth boundary.
$\mathrm{Cr}-24$ inches; weathered conglomerate rock.
Type location: Colusa County, California; about 1 mile west of Leesville, California; 1,800 feet east and 600 feet south of the northwest corner of section 5, T. 15 N., R. 5 W., MDB\&M; 39 degrees, 11 minutes, 30 seconds north latitude and 122 degrees, 26 minutes, 25 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 58 to 60 degrees $F$. The 7 - to 19 -inch soil moisture control section is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3$ or $5 / 4$ or 7.5YR $4 / 4$ or $4 / 3$ and moist color of 10 YR $4 / 3,3 / 4$, or $3 / 3$ or 7.5 YR $3 / 4$ or $3 / 3$. The texture is gravelly sandy loam, gravelly sandy clay loam, or gravelly loam. The content of rounded gravel 0.08 to 1.0 inch in size ranges from 15 to 35 percent. The content of clay ranges from 15 to 26 percent. Reaction is slightly acid or neutral.

The Bt and BCt horizons have dry color of 10YR $5 / 4$ or 7.5 YR $4 / 6$ or $4 / 4$ and moist color of 10YR $4 / 4$ or $3 / 4$ or $7.5 \mathrm{YR} 4 / 6$ or $4 / 3$. The texture is very gravelly sandy clay loam, very gravelly loam, or very gravelly clay loam. The content of rounded gravel 0.08 to 1.0
inch in size ranges from 35 to 60 percent. The content of clay ranges from 24 to 35 percent. Reaction is neutral or slightly alkaline.

The C horizon has dry color of $10 \mathrm{YR} 5 / 6$ or $5 / 3$ or 7.5 YR $4 / 6$ and moist color of $10 \mathrm{YR} 4 / 6$ or 7.5 YR $4 / 6$. The texture is very gravelly sandy clay loam, very gravelly sandy loam, or very gravlly clay loam. The content of rounded gravel 0.08 to 1.0 inch in size ranges from 35 to 60 percent. The content of clay ranges from 15 to 30 percent. Reaction is neutral or slightly alkaline.

## Capay Series

The Capay series consists of very deep, moderately well drained soils in interfan basins and other basins. These soils formed in alluvium derived from mixed rock sources. Slope ranges from 0 to 9 percent. The mean annual precipitation is 14 to 28 inches, and the mean annual air temperature is 58 to 62 degrees $F$.
Taxonomic class: Fine, smectitic, thermic Typic Haploxererts

## Typical Pedon

Capay clay loam, 0 to 1 percent slopes, in an area of cropland. When described on September 28, 1987, the soil was dry to a depth of 12 inches and moist below that depth.

Ap-0 to 15 inches; brown (10YR 5/3) clay loam, dark brown (10YR $3 / 3$ ) moist; massive; hard, firm, very sticky and very plastic; few very fine roots; few very fine tubular and interstitial pores; slightly acid ( pH 6.4 ); clear smooth boundary.
AB-15 to 33 inches; brown (10YR $5 / 3$ ) clay loam, dark brown (10YR 3/3) moist; massive; hard, firm, very sticky and very plastic; few very fine roots; few very fine tubular and interstitial pores; intersecting slickensides; slightly acid (pH 6.3); clear smooth boundary.
Bss1-33 to 39 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; moderate medium prismatic structure; very hard, firm, very sticky and very plastic; few very fine roots; many very fine tubular pores; common intersecting slickensides; neutral ( pH 6.6 ); clear smooth boundary.
Bss2-39 to 46 inches; brown (10YR 4/3) clay, dark brown (10YR $3 / 3$ ) moist; moderate medium prismatic structure; very hard, firm, very sticky and very plastic; few very fine roots; many very fine tubular pores; common intersecting slickensides; common medium distinct very dark grayish brown
(2.5Y 5/2) accumulations of iron; neutral ( pH 6.9 ); clear smooth boundary.
Bssk-46 to 64 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; very hard, firm, very sticky and very plastic; few very fine roots; many very fine tubular pores; common intersecting slickensides; lime occurring in common fine soft masses and concretions; few fine distinct grayish brown ( $2.5 \mathrm{Y} 5 / 2$ ) masses of iron depletion and common medium prominent dark gray ( $5 \mathrm{Y} 4 / 1$ ) accumulations of iron; neutral ( pH 7.2 ).

Type location: Colusa County, California; about $3 / 4$ mile east of the intersection of East Camp Road and Hawkins Road; 1,000 feet east and 200 feet south of the northwest corner of section 28, T. 15 N., R. 3 W., MDB\&M; 39 degrees, 07 minutes, 48 seconds north latitude and 122 degrees, 12 minutes, 03 seconds west longitude; USGS Williams, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 5 to 15 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section is 35 to 60 percent. A water table is at a depth of 36 to more than 60 inches.

The A horizon has dry color of 10YR $5 / 3,5 / 2,4 / 3$, or $4 / 2$ or $2.5 \mathrm{Y} 5 / 2$ or $4 / 2$ and moist color of 10YR $4 / 2$, $3 / 3$, or $3 / 2$ or $2.5 \mathrm{Y} 3 / 2$. The texture is clay loam, silty clay, or clay. Reaction is slightly acid to moderately alkaline.

The Bss and Bssk horizons have dry color of 10YR $6 / 4,6 / 3,5 / 4,5 / 3,4 / 3$, or $5 / 2 ; 2.5 \mathrm{Y} 6 / 2,5 / 4$, or $5 / 2$; or $5 \mathrm{Y} 5 / 2$. They have moist color of $10 \mathrm{YR} 4 / 4,4 / 3,3 / 4$, $3 / 3$, or $3 / 2 ; 2.5 \mathrm{Y} 4 / 2,3 / 4$, or $3 / 2$; or $5 \mathrm{Y} 3 / 2$. The texture is clay or silty clay. Reaction is neutral to moderately alkaline.

## Capay Taxadjunct

The Capay taxadjunct consists of very deep, moderately well drained soils in interfan basins and other basins. These soils formed in alluvium derived from sandstone and siltstone. Slope ranges from 0 to 9 percent. The mean annual precipitation is 16 to 28 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

Taxonomic class: Very-fine, smectitic, thermic Typic Haploxererts

## Typical Pedon

Capay clay, 0 to 3 percent slopes, in an area of rangeland. When described on September 22, 1993, the soil was dry throughout.
A1-0 to 4 inches; light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; very hard, firm; many very fine to medium roots; few very fine and fine continuous tubular pores; very slightly effervescent; neutral (pH 6.9); clear smooth boundary.
A2-4 to 11 inches; light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) clay, dark olive brown ( $2.5 \mathrm{Y} 3 / 3$ ) moist; moderate coarse subangular blocky structure parting to moderate medium subangular blocky and very coarse prismatic; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; few pressure faces; very slightly effervescent; neutral ( pH 7.2 ); clear wavy boundary.
Bss1-11 to 24 inches; light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) clay, dark grayish brown (2.5Y 4/3) moist; moderate medium angular blocky and very coarse prismatic structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; very slightly effervescent; slightly alkaline ( pH 7.6 ); clear wavy boundary.
Bss2-24 to 30 inches; clay that is dark grayish brown (10YR 4/2) moist; moderate medium angular blocky and very coarse prismatic structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; very slightly effervescent; moderately alkaline ( pH 8.1 ); gradual wavy boundary.
Bss3- 30 to 43 inches; clay that is dark olive brown (2.5Y 3/3) moist; strong coarse angular blocky structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; wedge-shaped blocks; strongly effervescent concretions scattered throughout the horizon; noneffervescent soil matrix; very slightly effervescent; moderately alkaline ( pH 8.3 ); gradual wavy boundary.
Bss4-43 to 59 inches; clay that is dark yellowish brown (10YR 4/4) moist; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; wedge-shaped blocks; strongly effervescent concretions scattered throughout the horizon; noneffervescent soil matrix; very slightly effervescent; moderately alkaline ( pH 8.1 ); gradual wavy boundary.

Bss5-59 to 75 inches; clay that is dark yellowish brown (10YR 4/6) moist; strong coarse angular blocky structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; wedge-shaped blocks; strongly effervescent concretions scattered throughout the horizon; noneffervescent soil matrix; very slightly effervescent; strongly alkaline ( pH 8.5 ); gradual wavy boundary.
Bss6-75 to 90 inches; clay that is dark yellowish brown (10YR 4/4) moist; strong coarse angular blocky structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; wedge-shaped blocks; strongly effervescent concretions scattered throughout the horizon; noneffervescent soil matrix; very slightly effervescent; strongly alkaline (pH 8.6); gradual wavy boundary.
Bss7-90 to 102 inches; clay that is dark yellowish brown (10YR 4/4) moist; strong coarse angular blocky structure; very hard, firm; few very fine and fine roots; few very fine and fine continuous tubular pores; wedge-shaped blocks; strongly effervescent concretions scattered throughout the horizon; noneffervescent soil matrix; very slightly effervescent; strongly alkaline ( pH 8.5 ).

Type location: Colusa County, California; about 2.5 miles north of Sites; 39 degrees, 20 minutes, 45 seconds north latitude and 122 degrees, 19 minutes, 53 seconds west longitude; USGS Sites, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 19 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section is 60 to 65 percent.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2,4 / 3$, or $4 / 2$ or $2.5 \mathrm{Y} 5 / 3,5 / 2$, or $4 / 2$ and moist color of 10 YR $4 / 2,3 / 3$, or $3 / 2$ or $2.5 \mathrm{Y} 4 / 3$ or $3 / 3$. The texture is silty clay or clay. Reaction is slightly acid to moderately alkaline.

The Bss horizon has dry color of 10YR $6 / 4,6 / 3$, $5 / 4,5 / 3$, or $5 / 2$ or $2.5 \mathrm{Y} 6 / 2,5 / 4,5 / 3$, or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 4,4 / 3,4 / 2,3 / 4,3 / 3$, or $3 / 2$ or $2.5 \mathrm{Y} 4 / 3$, $4 / 2,3 / 4$, or $3 / 3$. The texture is clay or silty clay. Reaction is neutral to strongly alkaline.

These soils are a taxadjunct to the Capay series because of the very-fine textural family.

## Clear Lake Series

The Clear Lake series consists of very deep, poorly drained soils on basin floors (figure 15). These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 20 inches, and the mean annual air temperature is 57 to 62 degrees $F$.

## Taxonomic class: Fine, smectitic, thermic Xeric Endoaquerts

## Typical Pedon

Clear Lake clay, 0 to 1 percent slopes, occasionally flooded, in an area of cropland. When described on October 25, 1988, the soil was dry to a depth of 10 inches and moist below that depth and had a water table at a depth of 6 feet.

Ap1-0 to 4 inches; gray (10YR 5/1) clay, very dark gray (10YR 3/1) moist; moderate fine subangular blocky structure; very hard, firm, very sticky and very plastic; many very fine roots; common very fine and many fine tubular pores; slightly acid ( pH 6.1); clear smooth boundary.

Ap2-4 to 10 inches; gray (10YR 5/1) clay, very dark gray (10YR 3/1) moist; moderate fine subangular blocky structure; very hard, firm, very sticky and very plastic; common very fine roots; many very fine tubular pores; common fine prominent olive brown (2.5Y 4/4) accumulations of iron; slightly acid (pH 6.1); clear wavy boundary.
Bss1-10 to 20 inches; gray (10YR 5/1) clay, very dark gray (10YR $3 / 1$ ) moist; strong very coarse prismatic structure; very hard, firm, very sticky and very plastic; common very fine roots; many very fine tubular pores; many intersecting slickensides; common fine prominent light olive brown (2.5Y $5 / 4$ ) accumulations of iron; neutral ( pH 6.9 ); gradual wavy boundary.
Bss2-20 to 34 inches; gray (10YR 5/1) clay, very dark gray (10YR 3/1) moist; moderate medium prismatic structure; very hard, firm, very sticky and very plastic; common very fine roots; many very fine tubular pores; many intersecting slickensides; common fine prominent light olive brown (2.5Y $5 / 4$ ) accumulations of iron; slightly alkaline ( pH 7.4); gradual wavy boundary.

Bss3-34 to 48 inches; gray (10YR 5/1) clay, dark grayish brown (2.5Y 4/2) moist; moderate coarse angular blocky structure; very hard, firm, very sticky and very plastic; few very fine and fine roots; common very fine tubular pores; many intersecting slickensides; common coarse prominent light olive brown (2.5Y 5/4)
accumulations of iron; slightly alkaline ( pH 7.8 ); clear smooth boundary.
Bssk1-48 to 60 inches; gray (5Y 5/1) clay, dark gray (5Y 4/1) moist; moderate medium angular blocky structure; very hard, firm, very sticky and very plastic; few very fine roots; common very fine tubular pores; many intersecting slickensides; common medium distinct light brownish gray (2.5Y $6 / 2$ ) accumulations of iron; strongly effervescent; moderately alkaline ( pH 7.9 ); clear smooth boundary.
Bssk2-60 to 80 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown ( $2.5 \mathrm{Y} 4 / 2$ ) moist; moderate medium angular blocky structure; very hard, firm, very sticky and very plastic; few very fine roots; common very fine tubular pores; many intersecting slickensides; strongly effervescent; common large distinct light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) accumulations of iron; moderately alkaline ( pH 8.0 ).
Type location: Colusa County, California; about $71 / 2$ miles northeast of Dunnigan, California, in an unsectionalized area, 1,710 feet west and 525 feet south of the southwest corner of section 6, T. 13 N., R. 1 E., MDB\&M; 38 degrees, 59 minutes, 45 seconds north latitude and 121 degrees, 55 minutes, 15 seconds west longitude; USGS Dunnigan, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section ranges from 40 to 60 percent.

The Ap horizon has dry color of $10 \mathrm{YR} 5 / 1,4 / 1$, or $3 / 1 ; 5 \mathrm{Y} 5 / 1$; or $\mathrm{N} 3 / 0$. It has moist color of $10 \mathrm{YR} 3 / 1$, $5 \mathrm{Y} 3 / 1$, or $\mathrm{N} 2 / 0$. The texture is clay. Effervescence is slight to violent. Some pedons have free carbonates in seams and dispersed throughout the matrix. Reaction is slightly acid to slightly alkaline.

The Bss and Bssk horizons have dry color of 10YR $5 / 1 ; 2.5$ Y $5 / 2 ; 5$ Y $6 / 2,5 / 2,5 / 1$, or $4 / 1$; or $N 5 / 0$. They have moist color of $10 \mathrm{YR} 4 / 4,3 / 2$, or $3 / 1 ; 2.5 \mathrm{Y} 4 / 2$ or $3 / 2$; 5 Y $5 / 3,4 / 3,4 / 2,4 / 1,3 / 2$, or $3 / 1$; or $N 3 / 0$ or $2 / 0$. The texture is clay. Reaction is neutral to strongly alkaline. Effervescence is slight to violent. Some pedons have free carbonates in seams and dispersed throughout the matrix. Some have manganese concretions and iron accumulations.

## Columbia Series

The Columbia series consists of very deep, moderately well drained soils on flood plains. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.
Taxonomic class: Coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvents

## Typical Pedon

Columbia fine sandy loam, frequently flooded, 0 to 2 percent slopes (soil survey of Sutter County, California, 1988).
Ap-0 to 10 inches; pale brown (10YR 6/3) fine sandy loam, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; common very fine roots; common very fine interstitial pores; neutral; clear smooth boundary.
AC-10 to 14 inches; brown (10YR $5 / 3$ ) fine sandy loam, dark brown (10YR $3 / 3$ ) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine roots; common coarse and very fine tubular pores; neutral; abrupt wavy boundary.
C1-14 to 19 inches; pale brown (10YR 6/3) fine sandy loam, dark brown (10YR 3/3) moist; massive; loose, very friable, nonsticky and nonplastic; many very fine interstitial pores; neutral; abrupt smooth boundary.
C2-19 to 33 inches; pale brown (10YR 6/3) fine sandy loam, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and common coarse roots; few coarse tubular pores; neutral; abrupt wavy boundary.
C3-33 to 38 inches; light yellowish brown (10YR 6/4) fine sandy loam, dark brown (10YR 3/3) moist; massive; loose, very friable, nonsticky and nonplastic; few fine and common coarse roots; few coarse tubular pores; common medium distinct strong brown (7.5YR 5/6) accumulations of iron; neutral; abrupt smooth boundary.
C4-38 to 68 inches; light yellowish brown (10YR 6/4) very fine sandy loam, dark brown (10YR $3 / 3$ ) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and common coarse roots; few fine tubular pores; common medium distinct strong brown (7.5YR 5/6) accumulations of iron; slightly alkaline.

Type location: Sutter County, California; about 2.2 miles northeast of Live Oak; 2,500 feet south and

4,900 feet east of the intersection of Rivera Road and Meteer Road; about 300 feet from the Feather River, in the Boga Land Grant; T. 17 N., R. 3 E. (not sectionizaled), MDB\&M; 39 degrees, 17 minutes, 44 seconds north latitude and 121 degrees, 37 minutes, 32 seconds west longitude; Gridley, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 21 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. Redoximorphic features are 10 to 34 inches from the surface. Stratification is weak to distinct, and strata of contrasting textures 0.25 to 0.5 inches thick are in some pedons. The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, is 10 to 18 percent. The content of fine sand and coarser sand is 68 to 70 percent. The texture is stratified fine sandy loam, very fine sandy loam, silt loam, loam, or loamy sand. The content of organic matter decreases irregularly with increasing depth.

The A horizon has dry color of 10YR 7/4, 7/2, 6/2, $6 / 3,5 / 3$, or $6 / 4$ and moist color of 10YR $4 / 2,4 / 3,4 / 4$, or $3 / 3$. The texture is loam or fine sandy loam.

The C horizon has dry color of 10YR $7 / 4,7 / 2,6 / 2$, $6 / 3$, or $6 / 4$ and moist color of $10 Y R ~ 5 / 2,5 / 4,4 / 3,4 / 4$, or $3 / 3$. Some pedons have a buried layer of clay, silty clay, silty clay loam, or clay loam at a depth of 40 to 60 inches.

## Colusa Series

The Colusa series consists of very deep, somewhat poorly drained soils on flood plains (figure 16). These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.
Taxonomic class: Coarse-loamy, mixed, superactive, thermic Typic Natrixeralfs

## Typical Pedon

Colusa loam, 0 to 2 percent slopes, in an area of rangeland. When described on October 24, 1988, the soil was dry throughout.

A-0 to 2 inches; pale brown (10YR 6/3) loam, dark brown (10YR $3 / 3$ ) moist; strong medium platy structure; very hard, friable, slightly sticky and slightly plastic; many coarse roots; many very fine
tubular pores; very strongly alkaline (pH 9.3); clear smooth boundary.
Btn1-2 to 9 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; strong fine prismatic structure parting to strong fine angular blocky; very hard, firm, slightly sticky and slightly plastic; many coarse roots; few coarse and many very fine tubular pores; few thin clay films lining pores; very strongly alkaline ( pH 10.2 ); clear smooth boundary.
Btn2—9 to 20 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; moderate coarse and medium prismatic structure; hard, friable, slightly sticky and slightly plastic; common coarse roots; common coarse, many very fine, and few fine and medium tubular pores; few thin clay films lining pores; very strongly alkaline ( pH 10.5 ); clear smooth boundary.
Btn3-20 to 26 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; moderate medium angular blocky structure; hard, friable, slightly sticky and slightly plastic; few coarse roots; common very fine, fine, and medium tubular pores; few thin clay films lining pores and on faces of peds; very strongly alkaline (pH 10.5); clear smooth boundary.
Btn4-26 to 37 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; moderate medium angular blocky structure; hard, friable, slightly sticky and slightly plastic; common coarse and many fine tubular pores; few thin clay films lining pores and on faces of peds and many moderately thick clay films lining planes of strata; very strongly alkaline ( pH 10.6 ); abrupt smooth boundary.
Btn5-37 to 53 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; moderate medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few medium tubular pores; few thin clay films lining pores and on faces of peds; very strongly alkaline (pH 10.5); clear smooth boundary.
Bn1—53 to 65 inches; brown (10YR 5/3) fine sandy loam, brown (10YR 4/3) moist; moderate medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine and few medium tubular pores; very strongly alkaline ( pH 10.3); clear smooth boundary.
Bn2-65 to 80 inches; brown (10YR 5/3) fine sandy loam, olive brown (2.5YR 4/3) moist; moderate medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common
fine and few very fine and medium tubular pores; very strongly alkaline ( pH 10.0 ).

Type location: Colusa County, California; about 1 mile south of Colusa, California, in an unsectionalized area, 1,200 feet north and 2,180 feet east of the southwest corner of section 33, T. 16 N., R. 1 W., MDB\&M; 39 degrees, 11 minutes, 35 seconds north latitude and 121 degrees, 59 minutes, 40 seconds west longitude; USGS Meridian, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the 2 - to 22-inch textural control section ranges from 14 to 18 percent. Depth to the natric horizon ranges from 0 to 10 inches.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 2$, or $5 / 2$ and moist color of $10 Y \mathrm{YR} 4 / 2,3 / 3$, or $3 / 2$. The texture is loam. Reaction is slightly alkaline to very strongly alkaline. SAR ranges from 50 to 100.

The Btn horizon has dry color of 10YR $6 / 3,5 / 3$, or $4 / 3$ and moist color of $10 \mathrm{YR} 3 / 2$ or $3 / 3$. The texture is loam or silt loam. Reaction is strongly alkaline or very strongly alkaline. SAR ranges from 75 to 175.

The Bn horizon has dry color of $2.5 \mathrm{Y} 6 / 4$ or $6 / 2$ or 10YR $6 / 3,6 / 4$, or $5 / 3$ and moist color of $2.5 Y 5 / 4,5 / 2$, or $4 / 3$. The texture is fine sandy loam or loam.
Reaction is strongly alkaline or very strongly alkaline. SAR ranges from 15 to 75 .

## Contra Costa Series

The Contra Costa series consists of moderately deep, well drained soils on hills and mountains (figure 17). These soils formed in residuum derived from tine grained sandstone. Slope ranges from 9 to 75 percent. The mean annual precipitation is 14 to 26 inches, and the mean annual air temperature is 57 to 63 degrees $F$.
Taxonomic class: Fine, mixed, superactive, thermic Mollic Haploxeralfs

## Typical Pedon

Contra Costa loam, in an area of Millsholm-Contra Costa association, 30 to 75 percent slopes, rangeland. When described on November 16, 1995, the soil was dry throughout.

A-0 to 3 inches; yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 3/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many very fine interstitial pores; 1 percent gravel; slightly acid ( pH 6.5 ); clear smooth boundary.
Bt1-3 to 8 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine tubular pores; 1 percent gravel; slightly acid (pH 6.5); clear smooth boundary.
Bt2-8 to 16 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; strong coarse angular blocky structure; slightly hard, friable, sticky and slightly plastic; few very fine and fine roots; few very fine tubular pores; common thin clay films bridging sand grains; 1 percent gravel; neutral (pH 6.7); clear smooth boundary.
Bt3-16 to 28 inches; brown (7.5YR 5/4) clay, brown (7.5YR 4/4) moist; strong coarse angular blocky structure; slightly hard, friable, sticky and slightly plastic; few very fine and fine roots; few very fine tubular pores; many thin clay films on faces of peds; 5 percent gravel; neutral (pH 6.7); abrupt smooth boundary.
Bt4-28 to 35 inches; brown (7.5YR 5/4) very gravelly clay loam, brown (7.5YR 4/4) moist; weak coarse angular blocky structure; slightly hard, friable, sticky and slightly plastic; few very fine tubular pores; many thin clay films on faces of peds; 45 percent gravel; neutral ( pH 7.0 ); abrupt wavy boundary.
R-35 inches; hard, fine grained sandstone; cracks as much as 1 inch wide filled with soil material.

Type Iocation: Colusa County, California; about 11½ miles west of Williams, California; 500 feet west and 1,600 feet north of the southeast corner of section 6, T. 14 N., R. 4 W., MDB\&M; 39 degrees, 05 minutes, 28 seconds north latitude and 122 degrees, 20 minutes, 09 seconds west longitude; USGS Salt Canyon, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact of sandstone ranges from 20 to 40 inches. The mean annual soil temperature is 64 to 66 inches. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 16 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from

November 1 to May 31. The weighted average clay content in the 3 - to 23 -inch particle-size control section ranges from 35 to 45 percent. The content of rock fragments ranges from 2 to 45 percent, by volume.

The A horizon has dry color of 10YR $6 / 4,6 / 3,5 / 4$, $5 / 3$, or $4 / 4$ and moist color of $10 \mathrm{YR} 4 / 4,3 / 4$, or $3 / 3$. The texture is loam. Reaction is slightly acid. The content of gravel ranges from about 1 to 10 percent.

The Bt horizon has dry color of $10 \mathrm{YR} 5 / 6,5 / 4,5 / 3$, or $4 / 4$ or 7.5 YR $5 / 4,4 / 4$, or $4 / 6$ and moist color of 10 YR $5 / 6,4 / 4$, or $3 / 4$ or 7.5 YR $4 / 4$ or $3 / 4$. The texture is dominantly clay loam or clay, but in some pedons the lower part is gravelly clay loam or very gravelly clay loam. Reaction is neutral to moderately acid. The content of gravel ranges from 0 to 10 percent in the upper part and 10 to 45 percent in the lower part.

## Corbiere Series

The Corbiere series consists of very deep, somewhat poorly drained soils on basin rims. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 61 to 63 degrees $F$.
Taxonomic class: Fine, mixed, superactive, thermic Cumulic Vertic Endoaquolls

## Typical Pedon

Corbiere silt loam, 0 to 1 percent slopes, in an area of cropland. When described on October 25, 1988, the soil was dry to a depth of 20 inches and moist below that depth.
Ap-0 to 7 inches; grayish brown (10YR $5 / 2$ ) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; hard, friable, very sticky and very plastic; many very fine and few fine roots; common fine interstitial pores; strongly effervescent; disseminated lime; neutral ( pH 7.3 ); clear smooth boundary.
Bw1-7 to 14 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; hard, friable, sticky and plastic; common very fine roots; common very fine tubular pores; strongly effervescent; disseminated lime; few fine prominent very dark grayish brown (2.5Y 3/2) (moist) accumulations of iron; slightly alkaline (pH 7.4); clear smooth boundary.

Bw2-14 to 22 inches; brown (10YR 5/3) silty clay loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; hard, firm, sticky and
slightly plastic; few very fine roots; common very fine tubular pores; strongly effervescent; disseminated lime; common fine prominent very dark grayish brown (2.5Y 3/2) (moist) accumulations of iron; neutral ( pH 7.3 ); gradual smooth boundary.
2Bw-22 to 35 inches; brown (10YR 5/3) silty clay, very dark grayish brown (10YR $3 / 2$ ) moist; moderate medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; few very fine tubular pores; strongly effervescent; disseminated lime; common fine prominent dark yellowish brown (10YR 4/4) (moist) accumulations of iron; slightly alkaline ( pH 7.6); abrupt smooth boundary.
$3 \mathrm{Ab}-35$ to 46 inches; grayish brown (2.5Y 5/2) silty clay, very dark grayish brown (2.5Y 3/2) moist; moderate medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; few very fine tubular pores; strongly effervescent; disseminated lime; common fine faint dark yellowish brown (10YR 4/6) accumulations of iron; slightly alkaline (pH 7.4); clear smooth boundary.
3Bssb1-46 to 60 inches; grayish brown (2.5Y 5/2) silty clay, very dark grayish brown (2.5Y 3/2) moist; moderate medium subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine interstitial and tubular pores; slightly effervescent; lime segregated in fine soft masses; many slickensides and common distinct pressure faces; common fine white sulfate crystals; slightly alkaline ( pH 7.4 ); gradual smooth boundary. 3Bssb2—60 to 74 inches; grayish brown (2.5Y 5/2) silty clay, very dark grayish brown (2.5Y 3/2) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine roots; few very fine interstitial and tubular pores; strongly effervescent; lime segregated in fine soft masses; many slickensides and many fine distinct pressure faces; common fine white sulfate crystals; slightly alkaline ( pH 7.5).

3C1-74 to 96 inches; grayish brown (2.5Y 5/2) clay, olive brown ( $2.5 \mathrm{Y} 4 / 4$ ) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine roots; few very fine interstitial and tubualar pores; strongly effervescent; dark gray (10YR 4/1) redoximorphic depletions; moderately alkaline (pH 8.0).
3C2—96 to 114 inches; light olive brown (2.5Y 5/4) clay; gray (10YR 5/1) redoximorphic depletions; moderately alkaline ( pH 8.0 ).

Type location: Colusa County, California; about 4½ miles northwest of Grimes, California; 1.25 miles west on Sachreiter Basin Road from Dry Slough Road, 200 feet north into a field; 1,260 feet west and 2,585 feet north of the southeast corner of section 4, T. 14 N., R. 1 W., MDB\&M; 39 degrees, 05 minutes, 00 seconds north latitude and 121 degrees, 58 minutes, 15 seconds west longitude; USGS Grimes, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$, and the soil temperature remains above 47 degrees $F$ all year. The weighted average clay content in the 10- to 40-inch textural control section ranges from 35 to 50 percent. The sodium adsorption ratio ranges from 5 to 13 throughout the profile. The 5- to 16 -inch soil moisture control section is dry in all parts from May 15 to October 31 and moist in all parts from November 15 to May 1.

The Ap horizon has dry color of $10 \mathrm{YR} 5 / 2$ or $5 / 3$ or $2.5 \mathrm{Y} 5 / 2$ and moist color of $10 \mathrm{YR} 3 / 2$ or $3 / 3$ or 2.5 Y $3 / 2$. The texture is silt loam. The content of clay ranges from 20 to 27 percent. Reaction is neutral or slightly alkaline.

The Bw horizon has dry color of 10YR $5 / 3$ or $5 / 2$ or $2.5 \mathrm{Y} 5 / 3$ or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 2,3 / 3$, or $3 / 2$. It is silt loam or silty clay loam and averages 20 to 35 percent clay. Reaction is neutral or slightly alkaline.

The 2Bw horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2$, or $4 / 3$ or $2.5 \mathrm{Y} 5 / 3$ or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 2$, $3 / 3$, or $3 / 2$ or $2.5 \mathrm{Y} 4 / 2$. It is silty clay and ranges from 40 to 55 percent clay. Reaction is slightly alkaline or moderately alkaline.

The 3 Ab horizon has dry color of $2.5 \mathrm{Y} 5 / 2$ or 10 YR $5 / 3$ or $5 / 2$ and moist color of $2.5 \mathrm{Y} 3 / 2$ or $10 \mathrm{YR} 3 / 3$ or $3 / 2$. It is silty clay and has 40 to 50 percent clay. Reaction is slightly alkaline or moderately alkaline.

The 3Bssb horizon has dry color of 10YR $5 / 3$ or $5 / 2$ or $2.5 \mathrm{Y} 6 / 3,5 / 3$, or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 2$ or $3 / 2$ or $2.5 \mathrm{Y} 4 / 3,4 / 2$, or $3 / 2$. It is silty clay and has 40 to 55 percent clay. Reaction is slightly alkaline or moderately alkaline.

## Corning Series

The Corning series consists of very deep, well drained soils on dissected terraces. These soils formed in alluvium derived from mixed rock sources. Slope ranges from 1 to 5 percent. The mean annual precipitation is 14 to 22 inches, and the mean annual air temperature is 57 to 63 degrees $F$.

## Taxonomic class: Fine, mixed, active, thermic Typic Palexeralfs

## Typical Pedon

Corning clay loam, 1 to 5 percent slopes, in an area of rangeland. When described on September 8, 1995, the soil was dry throughout.
A1-0 to 4 inches; reddish brown (5YR 4/4) clay loam, dark reddish brown (5YR 3/4) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine and fine roots throughout; common fine tubular pores; moderately acid (pH 5.9); 5 percent gravel; clear smooth boundary.
A2-4 to 9 inches; dark reddish brown (5YR 3/4) clay loam, dark reddish brown (5YR 3/4) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few fine and medium roots; few fine tubular pores; slightly acid (pH 6.2); 10 percent gravel; abrupt smooth boundary.
Bt1-9 to 20 inches; dark reddish brown (5YR 3/4) clay, dark reddish brown (5YR 3/4) moist; strong fine and medium prismatic structure; very hard, firm, sticky and plastic; few fine and medium roots; many very fine tubular pores; many thin clay films on faces of peds and pressure faces; slightly acid (pH 6.3); 5 percent gravel; gradual smooth boundary.
Bt2-20 to 31 inches; dark reddish brown (5YR 3/4) clay, dark reddish brown (5YR 3/4) moist; weak fine and medium prismatic structure; very hard, firm, sticky and plastic; few fine and medium roots; many very fine tubular pores; many thin clay films on faces of peds and pressure faces; slightly acid ( pH 6.3 ); 5 percent gravel; abrupt wavy boundary.
2BC1-31 to 39 inches; reddish brown (5YR 4/4) gravelly clay loam, dark reddish brown (5YR 3/4) moist; weak fine angular blocky structure; soft, very friable, slightly sticky and slightly plastic; few medium roots; common fine tubular pores; neutral ( pH 6.8 ); 20 percent gravel; clear smooth boundary.
2BC2-39 to 52 inches; reddish brown (5YR 4/4) very cobbly sandy clay loam, dark reddish brown (5YR 3/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; many fine interstitial pores; neutral ( pH 7.0 ); 40 percent gravel and 20 percent cobbles; clear smooth boundary.
3BC3-52 to 60 inches; reddish brown (5YR 4/4) very gravelly sandy loam, reddish brown (5YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few roots; many fine interstitial pores;
neutral ( pH 7.3 ); 55 percent gravel and 5 percent cobbles.

Type location: Colusa County, California; about 13/4 miles northwest of Stonyford, California; 2,550 feet north and 2,660 feet west of the southeast corner of section 31, T. 18 N., R. 6 W., MDB\&M; 39 degrees, 23 minutes, 04 seconds north latitude and 122 degrees, 34 minutes, 08 seconds west Iongitude; USGS Stonyford, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 60 to 64 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 5 to 18 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 \mathrm{YR} 5 / 6,5 / 4$, or $5 / 3$; 7.5 YR $5 / 4$ or $4 / 4$; or 5 YR $5 / 4,4 / 4$, or $3 / 4$. It has moist color of 10 YR $4 / 4,3 / 4$, or $3 / 3$; 7.5 YR $3 / 4$ or $3 / 3$; or 5 YR $3 / 4$. The texture is clay loam. The content of gravel ranges from 0 to 15 percent. Reaction is moderately acid to neutral.

The Bt horizon has dry color of $5 \mathrm{YR} 5 / 6,5 / 4,4 / 4$, or $3 / 4$ or 7.5 YR $5 / 6$ or $4 / 6$ and moist color of 5YR $4 / 6$, $4 / 4$, or $3 / 4$ or $7.5 \mathrm{YR} 4 / 6$. The texture is clay loam, clay, gravelly clay loam, gravelly clay, or gravelly sandy clay loam. The content of clay is 35 to 55 percent clay in the upper part of the horizon. The content of rock fragments is 5 to 35 percent, including 0 to 15 percent cobbles. Reaction is moderately acid to neutral.

The BC horizon has dry color of 5 YR $4 / 4$ or 7.5 YR $4 / 4$ and moist color of 5YR $4 / 4$ or $3 / 4$ or 7.5 YR $4 / 4$ or $3 / 4$. The texture is gravelly loamy sand, very gravelly loamy sand, gravelly sandy loam, very gravelly sandy loam, gravelly loam, or very gravelly loam. In some pedons this horizon has discontinuous, weak cementation. Reaction is slightly acid to slightly alkaline.

## Corval Series

The Corval series consists of very deep, well drained soils on nearly level high flood plains in narrow upland valleys and on alluvial fans. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 3 percent. The mean annual precipitation is 14 to 22 inches, and the mean annual air temperature is 57 to 63 degrees $F$.

Taxonomic class: Fine-silty, mixed, superactive, thermic Pachic Haploxerolls

## Typical Pedon

Corval loam, 0 to 3 percent slopes, on an eastfacing slope of 1 percent, under annual grasses, and at an elevation of 250 feet. When described on October 5, 1992, the soil was dry to a depth of 50 inches and moist below that depth.
A-0 to 8 inches; brown (10YR 4/3) loam, very dark grayish brown (10YR $3 / 2$ ) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine tubular pores; slightly acid ( pH 6.2 ); abrupt smooth boundary.
Bw1-8 to 24 inches; brown (10YR 4/3) clay loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many very fine and few fine tubular pores; slightly acid (pH 6.3); clear smooth boundary.
Bw2-24 to 36 inches; brown (10YR 4/3) clay loam, dark brown (10YR 3/3) moist; moderate fine angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine tubular pores; slightly acid (pH 6.5); clear smooth boundary.
Bw3-36 to 46 inches; dark yellowish brown (10YR 4/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate fine angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; many fine tubular pores; neutral (pH 6.6); clear smooth boundary.
Bw4-46 to 60 inches; brown (10YR 4/3) clay loam, dark brown (10YR 3/3) moist; moderate fine angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine tubular pores; neutral ( pH 6.6); clear smooth boundary.

Bw5-60 to 70 inches; dark yellowish brown (10YR 4/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate fine angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine tubular pores; neutral ( pH 6.8).

Type location: Colusa County, California; about $71 / 2$ miles southwest of Williams, California; 2,900 feet west and 1,500 feet north of the southeast corner of section 16, T. 14 N., R. 3 W.; 39 degrees, 03 minutes, 50 seconds north latitude and 122 degrees, 11 minutes, 50 seconds west longitude; USGS Cortina Creek, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 59 to 63
degrees $F$. The soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the 10- to 40-inch textural control section ranges from 27 to 35 percent.

The A horizon has dry color of 10YR $5 / 3$ or $4 / 3$ and moist color of $10 Y \mathrm{YR} 3 / 3$ or $3 / 2$. The texture is loam or clay loam. Reaction is slightly acid.

The upper part of the Bw horizon, to a depth of at least 20 inches, has dry color of 10YR $4 / 3$ and moist color of $10 \mathrm{YR} 3 / 3$, and the lower part has dry color of 10 YR $5 / 4,4 / 4$, or $4 / 3$ and moist color of $10 Y R 4 / 4,3 / 4$, or $3 / 3$. This horizon is silty clay loam or clay loam. Reaction is slightly acid or neutral.

## Dubakella Series

The Dubakella series consists of moderately deep, well drained soils on mountains. These soils formed in residuum weathered from serpentinitic rocks. Slope ranges from 15 to 50 percent. The mean annual precipitation is 35 to 50 inches, and the mean annual air temperature is 48 to 59 degrees $F$.

Taxonomic class: Clayey-skeletal, magnesic, mesic Mollic Haploxeralfs

## Typical Pedon

Dubakella clay loam, in an area of Okiota-Dubakella-Henneke complex, 15 to 50 percent slopes, chaparral. When described on August 16, 1996, the soil was dry throughout.
A-0 to 3 inches; very dark brown (7.5YR 2.5/2) gravelly clay loam, very dark brown (7.5YR 2.5/2) moist; moderate medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and medium roots; few very fine interstitial pores; 20 percent gravel; neutral (pH 7.0); abrupt smooth boundary.

Bt-3 to 10 inches; dark brown (7.5YR 3/4) very gravelly clay, dark brown (7.5YR 3/4) moist; strong medium and coarse angular blocky structure; hard, firm, moderately sticky and moderately plastic; few medium roots; few very fine interstitial pores; few pressure faces on peds; many thin clay films on faces of peds; 35 percent gravel; neutral ( pH 7.0 ); clear smooth boundary.
Btss1-10 to 16 inches; dark yellowish brown (10YR 3/4) very gravelly clay, dark yellowish brown (10YR 3/4) moist; strong medium and coarse angular blocky structure; hard, firm, moderately sticky and moderately plastic; few medium roots; few very fine interstitial pores; many
pressure faces on peds; common intersecting slickensides; many thin clay films on faces of peds; 35 percent gravel; neutral ( pH 7.3 ); abrupt smooth boundary.
Btss2-16 to 26 inches; dark yellowish brown (10YR 4/4) very gravelly clay, dark yellowish brown (10YR 3/4) moist; strong coarse angular blocky structure; hard, firm, moderately sticky and moderately plastic; few medium roots; few very fine interstitial pores; few pressure faces on peds; common intersecting slickensides; common thin clay films on faces of peds; 35 percent gravel; neutral ( pH 7.3 ); abrupt smooth boundary.
R-26 inches; hard peridotite rock.
Type location: Colusa County, California; about 6 miles southwest of Leesville, California; 2,600 feet east and 100 feet north of the southwest corner of section 23, T. 15 N., R. 6 W., MDB\&M; 39 degrees, 07 minutes, 34 seconds north latitude and 122 degrees, 29 minutes, 03 seconds west longitude; USGS Leesville, California, topographical quadrangle.

## Range in Characteristics

About 30 percent of the surface is covered with gravel and cobbles. The depth to hard peridotite bedrock ranges from 20 to 40 inches. The mean annual soil temperature is 50 to 52 degrees $F$. The soil moisture control section, from a depth of 8 to 28 inches, is dry in all parts from June 1 to October 31 and moist in some part the rest of the year.

The A horizon has dry color of 7.5YR 2.5/2 and moist color of 7.5YR 2.5/2. The texture is gravelly clay loam. The content of rock fragments is 15 to 35 percent. Reaction is neutral.

The B horizon has dry color of $7.5 \mathrm{YR} 3 / 4$ or 10YR $3 / 4$ or $4 / 4$ and moist color of $7.5 \mathrm{YR} 3 / 4$ or $10 \mathrm{YR} 3 / 4$. The texture is very gravelly clay. The content of rock fragments is 35 to 65 percent. Reaction is neutral.

## Eastpark Series

The Eastpark series consists of very deep, well drained soils on alluvial fan terraces. These soils formed in alluvium derived from serpentinitic rocks. Slope ranges from 0 to 2 percent. The mean annual precipitation is 20 to 24 inches, and the mean annual air temperature is 57 to 61 degrees $F$.

Taxonomic class: Clayey-skeletal, magnesic, thermic Mollic Haploxeralfs

## Typical Pedon

Eastpark clay loam, 0 to 2 percent slopes, in an
area of rangeland. When described on November 2, 1995, the soil was dry throughout.

A-0 to 7 inches; brown (7.5YR 4/4) clay loam, dark brown (7.5YR 3/4) moist; strong medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; common fine interstitial pores; 5 percent gravel; neutral ( pH 6.7 ); clear smooth boundary.
Bt-7 to 15 inches; dark brown (7.5YR 3/4) gravelly clay loam, dark brown (7.5YR $3 / 4$ ) moist; strong medium subangular blocky structure; hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; common fine interstitial pores; very few clay films on faces of peds; 15 percent gravel and 5 percent cobbles; neutral ( pH 7.0 ); clear smooth boundary.
BCt-15 to 26 inches; brown (7.5YR 4/4) very gravelly clay, dark brown (7.5YR 3/4) moist; massive; hard, friable, sticky and plastic; few very fine interstitial pores; few clay films on rock fragments; 50 percent gravel and 5 percent peridotite cobbles; neutral ( pH 7.2 ); clear smooth boundary.
C1-26 to 45 inches; light yellowish brown (2.5Y 6/3) extremely gravelly clay loam, olive brown (2.5Y $4 / 3$ ) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine interstitial pores; 65 percent gravel and 5 percent peridotite cobbles; neutral ( pH 7.5 ); abrupt smooth boundary.
C2-45 to 54 inches; light yellowish brown (2.5Y 6/3) loam, light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine interstitial pores; 10 percent peridotite gravel; slightly alkaline ( pH 7.5 ); abrupt smooth boundary.
C3-54 to 60 inches; light yellowish brown (2.5Y 6/3) extremely gravelly sandy clay loam, light olive brown ( $2.5 \mathrm{Y} 5 / 3$ ) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine interstitial pores; 60 percent peridotite gravel; slightly alkaline ( pH 7.5 ).

Type location: Colusa County, California; about 1 mile south and $3 / 4$ mile west of the southern dam of East Park Reservoir; 2,150 feet west and 1,500 feet south of the northeast corner of section $9, T$. 17 N., R. 6 W., MDB\&M; 39 degrees, 20 minutes, 38 seconds north latitude and 122 degrees, 31 minutes, 55 seconds west longitude; USGS Gilmore Peak, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 58 to 63 degrees $F$. The soil temperature is above 47 degrees $F$
the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 5 to 15 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 \mathrm{YR} 5 / 4$ or $4 / 4$ or 7.5 YR $4 / 4$ or $3 / 4$ and moist color of $10 \mathrm{YR} 3 / 4$ or 7.5 YR $3 / 4$ or $3 / 3$. The texture is clay loam or gravelly clay loam. The content of rock fragments is 0 to 35 percent, including 0 to 10 percent cobbles. Reaction is neutral.

The Bt horizon has dry color of $7.5 \mathrm{YR} 4 / 4,4 / 3$, or $3 / 4$ and moist color of $7.5 \mathrm{YR} 3 / 4$ or $3 / 3$. The texture is gravelly clay loam, gravelly sandy clay loam, very gravelly sandy clay loam, very gravelly clay loam, very gravelly clay, extremely gravelly sandy clay loam, extremely gravelly clay loam, or extremely gravelly clay. The content of rock fragments is 35 to 65 percent, including 5 to 15 percent cobbles. Reaction is neutral or slightly alkaline.

The C horizon has dry color of $2.5 \mathrm{Y} 6 / 3$ and moist color of $2.5 \mathrm{Y} 5 / 3$ or $4 / 3$. The texture is very gravelly loam, very gravelly clay loam, very gravelly sandy clay loam, extremely gravelly loam, extremely gravelly clay loam, or extremely gravelly sandy clay loam. The content of rock fragments is 35 to 70 percent, including 0 to 10 percent cobbles. Reaction is slightly alkaline.

## Endoaquolls

Endoaquolls consist of very deep, very poorly drained soils in meadows. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 45 to 50 inches, and the mean annual air temperature is 46 to 50 degrees $F$.

## Taxonomic class: Endoaquolls

## Typical Pedon

Endoaquolls, 0 to 2 percent slopes, frequently ponded. When described on July 19, 1995, the soil was moist and had a water table at a depth of 55 inches.

A1-0 to 4 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; common very fine and fine interstitial pores; common fine distinct dark yellowish brown (10YR 3/4) (moist) accumulations of iron; slightly acid (pH 6.2); clear smooth boundary.

A2—4 to 15 inches; grayish brown (10YR 5/2) loam, very dark gray (10YR 3/1) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine and few medium roots; common very fine and fine interstitial pores; many fine distinct dark yellowish brown (10YR 4/4) (moist) accumulations of iron; slightly acid (pH 6.5); clear smooth boundary.
2Bw1-15 to 24 inches; grayish brown (10YR 5/2) silty clay loam, very dark gray (10YR 3/1) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine and few medium roots; common very fine and fine interstitial pores; many fine distinct dark yellowish brown (10YR 4/4) (moist) accumulations of iron; few very fine and fine manganese concretions; slightly acid (pH 6.5); abrupt smooth boundary.

2Bw2—24 to 40 inches; pale brown (10YR 6/3) clay loam, mixed brown (10YR 4/3) and dark gray (10YR 4/1) moist; weak fine angular blocky structure; slightly hard, very friable, sticky and plastic; few fine interstitial pores; few very fine manganese concretions; 2 percent gravel; moderately alkaline ( pH 8.0 ); clear smooth boundary.
3C1-40 to 55 inches; pale brown (10YR 6/3) gravelly loam, dark gray (10YR 4/1) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine interstitial pores; common coarse dark yellowish brown (10YR 3/4) (moist) iron accumulations; 30 percent gravel; moderately alkaline ( pH 8.0 ); clear smooth boundary.
3C2—55 to 60 inches; dark brownish gray (10YR 6/2) gravelly loam, greenish gray (10BG 5/1) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine interstitial pores; common medium dark yellowish brown (10YR 4/6) (moist) iron accumulations; 20 percent gravel; moderately alkaline ( pH 8.0 ).
Type location: Colusa County, California; about 10½ miles west of Stonyford, California; 2,700 feet north and 950 feet west of the southeast corner of section 24, T. 17 N., R. 8 W., MDB\&M; 39 degrees, 18 minutes, 43 seconds north latitude and 122 degrees, 42 minutes, 16 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 46 to 50
degrees $F$. The soil moisture control section, from a depth of 7 to 20 inches, is dry in all parts from August 1 to October 1 and moist in some or all parts from October 15 to July 15.

The A horizon has dry color of $10 \mathrm{YR} 5 / 2$ or $4 / 1$ and moist color of $10 Y R 3 / 2,3 / 1$, or $2 / 1$. The texture is silt loam or loam. Reaction is moderately acid or slightly acid.

The 2Bw horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 2$, or $7 / 1$ and moist color of 10 YR $4 / 3,4 / 1,5 / 2,5 / 1$, or $4 / 4$. The texture is clay loam or silty clay loam. Reaction is moderately acid to moderately alkaline.

The 3C horizon has dry color of $10 \mathrm{YR} 6 / 3$ or $6 / 2$ and moist color of $10 \mathrm{YR} 4 / 1$ or 10BG 5/1. The texture is gravelly loam. Reaction is moderately acid to moderately alkaline.

## Etsel Series

The Etsel series consists of very shallow, somewhat excessively drained soils on mountain side slopes. These soils formed in residuum weathered from sandstone and shale. Slope ranges from 30 to 75 percent. The mean annual precipitation is 30 to 50 inches, and the mean annual air temperature is 52 to 57 degrees F .

Taxonomic class:Loamy-skeletal, mixed, active, nonacid, mesic Lithic Xerorthents

## Typical Pedon

Etsel gravelly sandy loam, in an area of Etsel-Maymen-Marpa association, 30 to 50 percent slopes, chaparral. When described on September 4, 1980, the soil was dry throughout.
A1-0 to 3 inches; light yellowish brown (10YR 6/4) gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine and fine tubular pores; 20 percent gravel; moderately acid ( pH 6.0 ); clear wavy boundary.
A2-3 to 10 inches; light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine and fine tubular pores; 45 percent gravel; moderately acid ( pH 5.8 ); abrupt wavy boundary.
R-10 inches; highly fractured metasedimentary sandstone and shale.

Type location: Colusa County, California; about 3 miles southeast of Cedar Camp Campground, along

Mendocino National Forest Service Roads 17N02 and M5, east on Road 17NO2 approximately $3^{11 / 2}$ miles; 600 feet west and 500 feet north of the southeast corner of section 10, T. 17 N., R. 7 W., MDB\&M; 39 degrees, 14 minutes, 47 seconds north latitude and 122 degrees, 37 minutes, 12 seconds west longitude; USGS Bartlett Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock range from 4 to 10 inches. The mean annual soil temperature is 56 to 59 degrees $F$. The soil moisture control section, from a depth of 8 to 10 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 4$, or $7 / 4$ or 7.5 YR $6 / 4$ or $7 / 4$ and moist color of 10YR $5 / 4$, $4 / 4$, or $3 / 4$ or 7.5 YR $5 / 4$ or $4 / 4$. The content of gravel ranges from 15 to 35 percent in the A1 horizon and from 35 to 50 percent in the A2 horizon. The texture is gravelly sandy loam, very gravelly loam, or very gravelly sandy loam. Reaction is slightly acid or moderately acid.

## Fouts Series

The Fouts series consists of moderately deep, well drained soils on mountain side slopes. These soils formed in residuum weathered from schist and shale. Slope ranges from 15 to 50 percent. The mean annual precipitation is 25 to 45 inches, and the mean annual air temperature is 48 to 60 degrees $F$.
Taxonomic class: Clayey-skeletal, mixed, superactive, thermic Ultic Argixerolls

## Typical Pedon

Fouts gravelly loam, in a wooded area of Fouts-Yorkville-Squawrock association, 15 to 50 percent slopes. When described on September 3, 1980, the soil was dry to a depth of 18 inches and slightly moist below that depth.
A—0 to 6 inches; gray (10YR 5/1) gravelly loam, very dark gray (10YR $3 / 1$ ) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine and fine interstitial pores; 20 percent gravel; neutral ( pH 7.0 ); clear wavy boundary.
Bt1-6 to 12 inches; dark gray (10YR 4/1) very gravelly clay, very dark gray (10YR 3/1) moist; strong medium angular blocky structure; hard, firm, sticky and plastic; common very fine and fine
roots; common very fine interstitial pores; 35 percent gravel; neutral (pH 6.8); clear wavy boundary.
Bt2—12 to 18 inches; dark gray (10YR 4/1) very gravelly clay, very dark gray (10YR 3/1) moist; strong medium angular blocky structure; few very fine roots; few very fine interstitial pores; 35 percent gravel; neutral (pH 6.8); clear wavy boundary.
Bt3-18 to 26 inches; dark gray (10YR 4/1) very gravelly clay, very dark gray (10YR 3/1) moist; strong medium angular blocky structure; few very fine roots; few very fine interstitial pores; 35 percent gravel; neutral (pH 7.0); abrupt wavy boundary.
R-26 inches; hard, dark schist.
Type location: Colusa County, California; about 1½ miles northeast of Fouts Springs, California; 1,800 feet north and 1,200 feet west of the southeast corner of section 32, T. 18 N., R. 7 W., MDB\&M; 39 degrees, 22 minutes, 07 seconds north latitude and 122 degrees, 39 minutes, 30 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock range from 20 to 40 inches. The mean annual soil temperature is 58 to 61 degrees $F$. The soil moisture control section, from a depth of 6 to 20 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 Y R 4 / 2,5 / 1,5 / 2$, or $5 / 3$ or $2.5 \mathrm{Y} 5 / 2$ and moist color of $10 \mathrm{YR} 2 / 2,3 / 1$, $3 / 2$, or $3 / 3$ or $2.5 \mathrm{Y} 3 / 2$. The texture is gravelly loam. Reaction is slightly acid to slightly alkaline.

The Bt horizon has dry color of 10YR $5 / 1,5 / 2,5 / 3$, $5 / 4,4 / 1,4 / 2$, or $4 / 3$ or $2.5 \mathrm{Y} 5 / 2$ or $5 / 3$ and moist color of $10 \mathrm{YR} 3 / 1,3 / 2,3 / 3,3 / 4,4 / 1$, or $4 / 4$ or $2.5 Y 3 / 2,4 / 2$, or $4 / 4$. The texture is very gravelly clay or very gravelly clay loam. The content of clay ranges from 35 to 50 percent. Reaction is slightly acid to slightly alkaline.

## Freezeout Series

The Freezeout series consists of moderately deep, well drained soils on mountain side slopes. These soils formed in residuum weathered from schist and metasedimentary rocks. Slope ranges from 30 to 75 percent. The mean annual precipitation is 50 to 70 inches, and the mean annual air temperature is 43 to 48 degrees $F$.

Taxonomic class: Loamy-skeletal, mixed, superactive, frigid Humic Dystroxerepts

## Typical Pedon

Freezeout very gravelly sandy loam, in a forested area of Freezeout-Yollabolly complex, 30 to 50 percent slopes.

Oi-0 to 1 inch; decomposed and partially decomposed conifer litter consisting of twigs, bark, needles, and cones.
A-1 to 5 inches; dark grayish brown (10YR 4/2) very gravelly sandy loam, very dark brown (10YR 2/2) moist; moderate medium granular structure; soft, very friable, nonsticky and nonplastic; common very fine and fine and few medium and coarse roots; many very fine and fine interstitial pores; 45 percent gravel and 10 percent cobbles; moderately acid (pH 5.7); clear wavy boundary.
Bw1-5 to 16 inches; brown (10YR 4/3) very gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; many fine, common medium, and few coarse roots; many very fine and fine interstitial pores; 30 percent gravel and 10 percent cobbles; moderately acid ( pH 5.6 ); gradual wavy boundary.
Bw2—16 to 25 inches; light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; weak subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; common very fine and fine roots; many very fine and fine interstitial pores; 40 percent gravel and 15 percent cobbles; strongly acid (pH 5.4); abrupt irregular boundary.

R-25 inches; hard, fractured metasedimentary rocks.
Type Iocation: Colusa County, California; in Mendocino National Forest, about 800 feet east of the Lake County line, 450 feet downslope from Road 16N03, at a point about $1 / 2$ mile south of its junction with the Horse Glade turnoff; 2,650 feet south and 100 feet west of the northeast corner of section 2, T. 16 N., R. 8 W., MDB\&M; 39 degrees, 15 minutes, 57 seconds north latitude and 122 degrees, 43 minutes, 12 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact is 20 to 40 inches. The mean annual soil temperature is 44 to 47 degrees $F$. The soil temperature exceeds 41 degrees $F$ from March 15 to November 15 and exceeds 47 degrees F from April 15 to October 15. The umbric epipedon is

10 to 20 inches thick. The soil moisture control section, from a depth of 12 to 25 inches, is dry in all parts from late July to early October and moist in all parts from December 15 to May 30. The solum is slightly acid to very strongly acid, and base saturation ranges from 35 to 50 percent. The particle-size control section (from a depth of 10 to 25 inches) ranges from 10 to 18 percent clay.

The A horizon has dry color of $10 \mathrm{YR} 5 / 4,5 / 3$, or $4 / 2$ and moist color of 10 YR $3 / 3,3 / 2$, or $2 / 2$. The texture is very gravelly sandy loam. The content of rock fragments ranges from 20 to 55 percent, including 0 to 10 percent stones and cobbles and 20 to 45 percent gravel.

The B horizon has dry color of $10 Y \mathrm{R} 6 / 3,6 / 4,5 / 4$, or $4 / 3$ or $7.5 \mathrm{YR} 6 / 4$ or $5 / 4$ and moist color of 10YR $5 / 4$, $4 / 4,4 / 3,3 / 4$, or $3 / 2$ or 7.5 YR $5 / 4$ or $4 / 4$. The texture is very gravelly sandy loam, very gravelly loam, or extremely gravelly sandy loam. The content of rock fragments ranges from 35 to 80 percent, including 0 to 20 percent stones and cobbles and 35 to 65 percent gravel.

## Goldeagle Series

The Goldeagle series consists of deep, well drained soils on dissected terrace side slopes. These soils formed in material weathered from sandstone, siltstone, or shale. Slope ranges from 30 to 75 percent. The mean annual precipitation is 16 to 18 inches, and the mean annual air temperature is 58 to 60 degrees F.

Taxonomic class: Fine, mixed, superactive, thermic Typic Haploxeralfs

## Typical Pedon

Goldeagle sandy clay loam, in an area of Goldeagle-Positas-Balcom complex, 30 to 75 percent slopes; described on November 19, 1990.
A—0 to 3 inches; grayish brown (10YR 5/2) sandy clay loam, brown (10YR 4/3) moist; strong thick platy structure; hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine interstitial and tubular and few fine tubular pores; moderately acid (pH 5.7); abrupt wavy boundary.
Bt1-3 to 9 inches; brown (10YR 5/3) clay loam, brown (10YR 4/3) moist; strong coarse subangular blocky structure parting to strong coarse prismatic; hard, friable, sticky and plastic; many very fine roots; common very fine tubular and interstitial and few fine tubular pores; few thin clay
films on faces of peds; slightly acid (pH 6.1); clear smooth boundary.
Bt2-9 to 25 inches; brown (10YR 4/3) clay loam, brown (10YR 4/3) moist; strong coarse prismatic structure parting to strong coarse subangular blocky; very hard, friable, sticky and plastic; common very fine and few fine roots; common very fine interstitial and few very fine tubular pores; common thin clay films lining pores and on faces of peds; slightly acid (pH 6.5); clear smooth boundary.
Btk-25 to 33 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; strong coarse prismatic structure parting to strong coarse subangular blocky; hard, friable, sticky, and plastic; common very fine and few fine roots; common very fine interstitial and few very fine tubular pores; common moderately thick clay films lining pores and on faces of peds; strongly effervescent ( 6 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); common medium carbonates occurring as irregular soft masses and few medium carbonates occurring as rounded concretions; slightly alkaline ( pH 7.4 ); abrupt wavy boundary.
2Ck1- 33 to 49 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; massive; hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine interstitial and very fine and fine tubular pores; strongly effervescent (6 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); common carbonates occurring as fine filaments or threads and few fine carbonates occurring as rounded concretions; slightly alkaline ( pH 7.8 ); abrupt wavy boundary.
2Ck2—49 to 59 inches; light gray (2.5Y 7/2) loam, light yellowish brown ( $2.5 \mathrm{Y} 6 / 4$ ) moist; massive; hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular and interstitial pores; violently effervescent (12 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); many carbonates occurring as large seams on faces of peds; slightly alkaline ( pH 7.8 ); clear smooth boundary.
$2 \mathrm{Cr}-59$ to 80 inches; light gray ( $2.5 \mathrm{Y} 7 / 2$ ) siltstone; compact, massive, hard and brittle; few very fine roots along fracture planes; violently effervescent ( 5 percent calcium carbonate, $\mathrm{HCl}, 1$ normal); common carbonates occurring as large seams along fracture planes; not effervescent in the weathered bedrock matrix.

Type location: Colusa County, California; about 8½ miles southwest of Williams, California; 2,200 feet
east and 600 feet south of the northeast corner of section 19, T. 14 N., R. 3 W., MDB\&M; 39 degrees, 03 minutes, 20 seconds north latitude and 122 degrees, 13 minutes, 50 seconds west longitude; USGS Cortina Creek, California, topographic quadrangle.

## Range in Characteristics

The depth to paralithic contact of soft siltstone, sandstone, or shale is 40 to 80 inches. The mean annual soil temperature is about 62 degrees $F$, and the soil temperature is above 47 degrees $F$ the entire year. The soil moisture control section, from a depth of 4 to 12 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31. The weighted average clay content in the textural control section, the top 20 inches of the argillic horizon, is 36 percent.

The A horizon has dry color of 10YR 4/3, 4/4, 5/2, $5 / 3$, or $6 / 2$ and moist color of $10 Y R 3 / 3,3 / 4,4 / 2,4 / 3$, or $4 / 4$ or $2.5 \mathrm{Y} 4 / 2$. In some pedons this horizon has moist value of 3 in the top 3 inches. The texture is sandy clay loam. The content of clay ranges from 20 to 35 percent. Reaction is moderately acid to neutral.

The Bt and Btk horizons have dry color of 10YR $4 / 3,4 / 4,5 / 2,5 / 3,5 / 4$ or $6 / 3 ; 2.5 \mathrm{Y} 5 / 2$ or $5 / 4$; or 7.5 YR $5 / 2,5 / 4$, or $4 / 4$. They have moist color of 10YR $4 / 3$, $4 / 4$, or $5 / 3$; 2.5 Y $4 / 3$ or $4 / 4$; or 7.5 YR $4 / 4$ or $4 / 6$. The texture is clay loam or clay. The content of clay ranges from 35 to 45 percent. Reaction is slightly acid to slightly alkaline. Carbonates may occur in the lower part.

The Ck horizon has dry color of $10 Y \mathrm{YR} 5 / 3,5 / 2,5 / 4$, $6 / 3$, or $6 / 4 ; 7.5 \mathrm{YR} 4 / 4$; or $2.5 \mathrm{YR} 7 / 2$. It has moist color of 10 YR $5 / 4$ or $4 / 4$ or $2.5 \mathrm{Y} 4 / 3$ or $6 / 4$. The texture is sandy loam or loam. The content of clay ranges from 15 to 27 percent. Reaction is neutral to moderately alkaline.

The Cr is weathered, soft sandstone, siltstone, or shale.

## Goulding Series

The Goulding series consists of shallow, somewhat excessively drained soils on mountain side slopes (figure 18). These soils formed in residuum derived from metasedimentary rocks. Slope ranges from 30 to 75 percent. The mean annual precipitation is 40 to 60 inches, and the mean annual air temperature is 46 to 54 degrees $F$.

Taxonomic class: Loamy-skeletal, mixed, active, mesic Lithic Dystroxerepts

## Typical Pedon

Goulding gravelly loam, in a forested area of Neuns-Marpa-Goulding complex, 30 to 50 percent slopes. When described on July 18, 1995, the soil was dry throughout.
Oi-0 to 1 inch; manzanita and live oak litter.
A-1 to 4 inches; light yellowish brown (10YR 6/4) gravelly loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common fine and medium roots; many very fine interstitial pores; 30 percent gravel; moderately acid ( pH 6.0 ); clear smooth boundary.
Bw1-4 to 8 inches; light yellowish brown (10YR 6/4) very gravelly loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common fine and medium and few coarse roots; many very fine interstitial pores; 55 percent gravel; moderately acid ( pH 5.8 ); clear smooth boundary.
Bw2-8 to 13 inches; light yellowish brown (10YR 6/4) very gravelly loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many fine and medium, common coarse, and few very coarse roots; many very fine interstitial pores; 5 percent cobbles and 50 percent gravel; strongly acid ( pH 5.5 ); abrupt wavy boundary.
R-13 inches; hard, fractured metasedimentary bedrock with soil material in cracks.
Type location: Colusa County, California; about 75 feet down the south slope from Mendocino National Forest Service Road 18N07, 210 feet east of the intersection of Forest Service Roads 18N07 and 17NO2; 250 feet north and 1,000 feet west of the southeast corner of section 31, T. 17 N., R. 7 W., MDB\&M; 39 degrees, 16 minutes, 40 seconds north latitude and 122 degrees, 40 minutes, 39 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock are 10 to 20 inches. The mean annual soil temperature is 49 to 55 degrees $F$. The soil moisture control section, from a depth of 6 to 12 inches, is dry in all parts from June 1 to October 31 and moist in some part the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 4,6 / 3$, or $6 / 4$ and moist color of $10 \mathrm{YR} 3 / 3,3 / 4,4 / 3$, or $4 / 4$. The content of gravel is 25 to 55 percent. Reaction is moderately acid or strongly acid.

The B horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 4$, or $6 / 6$ and moist color of $10 \mathrm{YR} 3 / 4,3 / 3$, or $4 / 4$. The texture is very gravelly sandy loam, extremely gravelly sandy loam, very gravelly loam, or extremely gravelly loam. The content of gravel is 35 to 70 percent. Reaction is moderately acid or strongly acid.

## Grandbend Series

The Grandbend series consists of very deep, somewhat poorly drained soils on nearly level flood plains. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Coarse-loamy, mixed, superactive, thermic Oxyaquic Haploxerolls

## Typical Pedon

Grandbend loam, 0 to 2 percent slopes, in a field of safflower stubble. When described on November 3, 1989, the soil was moist to a depth of 16 inches and slightly moist below that depth.

Ap-0 to 16 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial pores; neutral (pH 6.9); abrupt smooth boundary.
C1-16 to 27 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial pores; slightly alkaline ( pH 7.4 ); gradual smooth boundary.
C2-27 to 44 inches; light brownish gray ( $2.5 \mathrm{Y} 6 / 2$ ) sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial pores; few fine prominent light olive brown (2.5Y $5 / 6$ ) accumulations of iron; slightly alkaline ( pH 7.5 ); clear smooth boundary.
C3-44 to 54 inches; light brownish gray ( $2.5 \mathrm{Y} 6 / 2$ ) silt loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial pores; common medium prominent light olive brown
(2.5Y 5/4) and light yellowish brown (2.5Y 6/4) accumulations of iron; slightly alkaline ( pH 7.4 ); abrupt smooth boundary.
2Ab-54 to 64 inches; dark gray (10YR 4/1) silty clay loam, black ( $\mathrm{N} 2 / 0$ ) moist; weak fine subangular blocky structure parting to weak medium subangular blocky; hard, firm, slightly sticky and moderately plastic; common very fine roots; few very fine tubular pores; common fine prominent pale yellow ( $2.5 \mathrm{Y} 7 / 4$ ) accumulations of iron; slightly alkaline ( pH 7.3 ); clear smooth boundary.
2Bb-64 to 67 inches; gray ( $5 \mathrm{Y} 5 / 1$ ) silty clay loam, very dark gray ( $5 \mathrm{Y} 3 / 1$ ) moist; weak fine subangular blocky structure parting to weak medium subangular blocky; hard, firm, slightly sticky and moderately plastic; few very fine roots; few very fine tubular pores; few fine faint light yellowish brown ( $2.5 \mathrm{Y} 6 / 4$ ) accumulations of iron; neutral ( pH 7.2 ).
Type location: Colusa County, California; about $2^{1 / 4}$ miles southwest of Grimes, California; 1,250 feet east and 300 feet south of the northwest corner of section 15, T. 14 N., R. 1 E., MDB\&M; 39 degrees, 03 minutes, 28 seconds north latitude and 121 degrees, 51 minutes, 07 seconds west longitude; USGS Tisdale Weir, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. The soil moisture control section, from a depth of 6 to 18 inches, is dry in all parts from May 15 to October 31 and moist in some part from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, is 8 to 17 percent.

The Ap horizon has dry color of $10 \mathrm{YR} 5 / 3$ or $5 / 2$ or $2.55 / 2$ and moist color of $10 \mathrm{YR} 3 / 3$ or $3 / 2$ or $2.5 \mathrm{Y} 3 / 2$. Reaction is neutral.

The C horizon has dry color of $10 \mathrm{YR} 6 / 3$ or 2.5 Y $6 / 2$ and moist color of 10 YR $3 / 3,4 / 2$, or $5 / 3$; 2.5 Y $5 / 2$, $3 / 2,4 / 2$, or $4 / 4$; or $5 \mathrm{Y} 2.5 / 2$. The texture is silt loam, loam, or sandy loam. Reaction is slightly alkaline.

The 2Ab horizon has dry color of $10 \mathrm{YR} 4 / 1,5 / 1$, or $6 / 1$ or $2.5 \mathrm{Y} 6 / 2$ and moist color of $10 \mathrm{YR} 2 / 1,3 / 1$, or $4 / 1$; $\mathrm{N} 2 / 0$; or $2.5 \mathrm{Y} 3 / 2$. The texture is silt loam, silty clay loam, or silty clay. Reaction is slightly alkaline or neutral.

The 2Bb horizon has dry color of $5 \mathrm{Y} 5 / 1$ or $2.5 \mathrm{Y} 6 / 2$ and moist color of $5 \mathrm{Y} 3 / 1$ or $2.5 \mathrm{Y} 4 / 2$. The texture is silty clay loam or silty clay. Reaction is neutral.


Figure 12.-An area of the deep Altamont and moderately deep Sehorn soils along a research trench near Sites. Vertical cracks and smooth slickensides are evident. Altamont soils are between the flagging.


Figure 13.-Profile of the very deep Arbuckle soils, which have gravel throughout. The scale is in centimeters.


Figure 14.-Road cut in an area of the very deep Bamtush soils. The spade is about 40 inches long.


Figure 15.—Profile of the very deep Clear Lake soils, which have deep vertical cracks and slickensides. The scale is in feet.


Figure 16.—Profile of the very deep Colusa soils, which have prismatic structure in the upper part of the subsoil. The scale is in feet.


Figure 17.—Profile of Contra Costa soils, which are moderately deep over sandstone. The scale is in feet.


Figure 18.-Profile of Goulding soils, which are shallow over metasedimentary bedrock. The knife is 8 inches long.


Figure 19.—Profile of Millsholm soils, which are shallow over sandstone. The knife is 8 inches long.


Figure 20.—Profile of the very deep Venado soils in Bear Valley. The scale is in centimeters.


Figure 21.-Profile of the very deep Westfan soils near Williams. The scale is in feet.


Figure 22.-The very deep Willows soils along a research trench. Exposed slickensides appear as smooth areas in the subsoil.

## Guenoc Series

The Guenoc series consists of moderately deep, well drained soils on side slopes on mountains and foothills. These soils formed in residuum weathered from basalt. Slope ranges from 5 to 50 percent. The mean annual precipitation is 22 to 28 inches, and the mean annual air temperature is 58 to 60 degrees $F$.
Taxonomic class: Fine, kaolinitic, thermic Typic Rhodoxeralfs

## Typical Pedon

Guenoc loam, in an area of Stonyford-Guenoc loams, 30 to 50 percent slopes, rangeland. When described on July 16, 1980, the soil was dry to a depth of 11 inches and moist below that depth.
A1-0 to 4 inches; reddish brown (5YR 4/4) loam, dark reddish brown (5YR 3/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many very fine roots; common fine and medium interstitial pores; neutral ( pH 7.0 ); clear wavy boundary.
A2-4 to 9 inches; reddish brown (2.5YR 4/4) loam, reddish brown (2.5YR 4/4) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; common very fine and few fine roots; common fine and medium interstitial pores; 10 percent gravel; neutral ( pH 7.0 ); clear wavy boundary.
Bt1-9 to 18 inches; reddish brown (2.5YR 4/4) clay loam, dark reddish brown (2.5YR 3/4) moist; moderate medium subangular blocky structure; hard, friable, sticky and plastic; common thin clay films on faces of peds and lining pores; few fine and very fine roots; common fine interstitial pores; 10 percent gravel; neutral (pH 6.8); gradual wavy boundary.
Bt2-18 to 31 inches; reddish brown (2.5YR 5/4) clay, reddish brown (2.5YR 4/4) moist; strong medium and coarse subangular blocky structure; hard, friable, sticky and plastic; few moderately thick and common thin clay films on faces of peds and lining pores; few fine roots; common fine interstitial pores; 5 percent gravel; neutral ( pH 6.8 ); abrupt irregular boundary.
R-31 inches; hard, fractured basalt; some soil material in fractures 2 to 4.5 inches long and 0.05 to 0.3 inch wide.

Type location: Colusa County, California; about 1 1⁄2 miles west of Stonyford, California; 300 feet north and 700 feet west of the southeast corner of section 25, T. 18 N., R. 7 W., MDB\&M; 39 degrees,

22 minutes, 43 seconds north latitude and 122 degrees, 34 minutes, 51 seconds west longitude; USGS Stonyford, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock are 20 to 40 inches. The particle-size control section, from a depth of 9 to 29 inches, has 35 to 45 percent clay and less than 35 percent gravel. Reaction is neutral throughout the profile. The mean annual soil temperature is 58 to 60 degrees $F$. The soil moisture control section, from a depth of 6 to 19 inches, is dry in all parts from June 1 to October 31 and moist in all or some parts the rest of the year.

The A horizon has dry color of 5 YR $5 / 4,5 / 3,4 / 4$, or $4 / 3$ or 2.5 YR $4 / 4$ and moist color of 5 YR $3 / 3$ or $3 / 4$ or 2.5YR 4/4. The texture is loam. The content of rock fragments ranges from 0 to 15 percent.

The Bt horizon has dry color of $2.5 \mathrm{YR} 5 / 4,4 / 4,4 / 3$, or $3 / 4$ and moist color of 2.5 YR $3 / 4$ or $4 / 4$. The texture is clay loam, clay, gravelly clay loam, or gravelly clay.

## Haploxererts

Haploxererts consist of deep or very deep, well drained soils on mountain side slopes. These soils formed in residuum and colluvium weathered from serpentinitic rocks. Slope ranges from 15 to 50 percent. The mean annual precipitation is 18 to 22 inches, and the mean annual air temperature is 58 to 60 degrees $F$.
Taxonomic class: Haploxererts

## Typical Pedon

Haploxererts, 30 to 50 percent slopes, in an area of rangeland. When described on August 28, 1996, the soil was dry throughout.

A1-0 to 5 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and few fine roots; many fine interstitial pores; 5 percent gravel; slightly alkaline ( pH 7.4 ); clear smooth boundary.
A2-5 to 15 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong coarse subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common very fine and few fine roots; many fine interstitial pores; 5 percent cobbles and 10 percent gravel; slightly alkaline ( pH 7.8 ); clear smooth boundary.

Bss-15 to 28 inches; dark grayish brown (2.5Y 4/2) clay, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; moderate coarse angular blocky structure; hard, firm, sticky and plastic; few very fine roots; few very fine interstitial pores; many intersecting slickensides on faces of peds; 5 percent cobbles and 5 percent gravel; slightly alkaline ( pH 7.8 ); abrupt smooth boundary.
C1-28 to 39 inches; brown (10YR 5/3) gravelly clay loam, dark brown (10YR $3 / 3$ ) moist; massive; soft, very friable, slightly sticky and slightly plastic; many very fine interstitial pores; 5 percent cobbles and 25 percent gravel; moderately alkaline ( pH 8.0); abrupt smooth boundary.

C2-39 to 52 inches; light olive gray ( $5 \mathrm{Y} 6 / 2$ ) very gravelly loam, olive gray (5Y 4/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; many very fine interstitial pores; 5 percent cobbles and 35 percent gravel; moderately alkaline ( pH 8.1); abrupt smooth boundary.
$\mathrm{Cr}-52$ inches; highly weathered serpentinitic rock.
Type location: Colusa County, California; about $3 / 4$ mile northwest of the intersection of Highway 16 and Highway 20 at the southern entrance to Bear Valley; 20 feet west and 1,900 feet north of the southeast corner of section 35 , T. 14 N., R. 5 W., MDB\&M; 39 degrees, 00 minutes, 52 seconds north latitude and 122 degrees, 22 minutes, 20 seconds west longitude; USGS Salt Canyon, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 58 to 63 degrees F . The depth to a highly weathered paralithic contact of serpentinitic rock ranges from 40 to 80 inches. The soil moisture control section, from a depth of 6 to 19 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31. When the soils are dry, cracks form at the surface. The cracks are 1 to 2 centimeters wide and extend to a depth of about 25 inches.

The A horizon has dry color of 10 YR $5 / 1$ or $4 / 2$, $2.5 \mathrm{Y} 4 / 2$, or $5 \mathrm{Y} 5 / 1$ or $5 / 2$ and moist color of $10 \mathrm{YR} 3 / 2$ or $3 / 1$ or $5 \mathrm{Y} 3 / 1$. The texture is clay loam. Reaction is slightly alkaline or moderately alkaline.

The Bss horizon has dry color of 10YR 5/1, 2.5Y $5 / 2$ or $4 / 2$, or $5 \mathrm{Y} 5 / 2$ or $4 / 2$ and moist color of 10 YR $4 / 1,2.5 \mathrm{Y} 3 / 2$, or $5 \mathrm{Y} 4 / 2,4 / 1$, or $3 / 2$. The texture is clay. Reaction is slightly alkaline or moderately alkaline.

The C horizon has dry color of $10 \mathrm{YR} 5 / 3,2.5 \mathrm{Y} 6 / 2$ or $5 / 2$, or $5 \mathrm{Y} 6 / 2$ and moist color of $10 \mathrm{YR} 3 / 3,2.5 \mathrm{Y}$ $4 / 2$ or $3 / 2$, or $5 \mathrm{Y} 4 / 2$. The texture is gravelly clay loam or very gravelly loam. Reaction is moderately alkaline.

## Henneke Series

The Henneke series consists of shallow, well drained soils on mountain side slopes. These soils formed in residuum weathered from serpentinitic rocks. Slope ranges from 15 to 75 percent. The mean annual precipitation is 24 to 50 inches, and the mean annual air temperature is 48 to 60 degrees $F$.
Taxonomic class: Clayey-skeletal, magnesic, thermic Lithic Argixerolls.

## Typical Pedon

Henneke sandy loam, in a wooded area of Okiota-Dubakella-Henneke complex, 15 to 30 percent slopes. When described on March 29, 1991, the soil was moist throughout.
$\mathrm{Oi}-0$ to 1 inch; manzanita leaves and foothill pine needles, twigs, and branches.
A-1 to 4 inches; brown (7.5YR 4/3) sandy loam, dark brown (7.5YR 3/2) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; many very fine interstitial pores; 10 percent angular peridotite gravel; neutral ( pH 6.7 ); clear smooth boundary.
Bt1-4 to 7 inches; dark brown (7.5YR 3/3) extremely gravelly clay loam, dark brown (7.5YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few coarse roots; common very fine interstitial pores; 60 percent angular peridotite gravel; neutral ( pH 7.0 ); clear smooth boundary.
Bt2-7 to 16 inches; brown (7.5YR 4/3) extremely gravelly clay, dark brown (7.5YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, sticky and plastic; few very fine interstitial pores; common thin clay films on faces of peds; 75 percent angular peridotite gravel; neutral ( pH 7.0 ); clear abrupt boundary.
R-16 inches; hard, fractured peridotite.
Type location: Colusa County, California; about 2 miles north of Cold Springs Mountain; 2,400 feet west and 600 feet north of the southeast corner of section 23, T. 15 N., R. 6 W., MDB\&M; 39 degrees, 07 minutes, 35 seconds and 122 degrees, 29 minutes, 30 seconds west longitude; USGS Wilbur Springs, California, topographic quadrangle.

## Range in Characteristics

The depth to peridotite bedrock is 10 to 20 inches. In most pedons, 75 to 95 percent of the surface is covered with slightly weathered peridotite gravel and
about 15 percent is covered with cobbles. The mean annual soil temperature is 48 to 62 degrees $F$. The soil moisture control section, from a depth of 6 to 19 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $7.5 \mathrm{YR} 4 / 3$ or $4 / 4$, 5 YR $2.5 / 2$, or 2.5 YR $3 / 4$ and moist color of 7.5 YR $3 / 3$ or $3 / 2$ or 5 YR $2.5 / 2$. The texture is sandy loam. The content of rock fragments ranges from 5 to 15 percent, by volume. In some pedons the horizon is gravelly, very gravelly, or cobbly. Reaction is moderately acid to neutral.

The Bt horizon has dry color of 7.5YR $3 / 2,3 / 3,4 / 3$, or $4 / 4$ or 5 YR $3 / 3$ and moist color of 7.5 YR $3 / 2,3 / 3$, or $3 / 4$ or $5 \mathrm{YR} 3 / 3$ or $2.5 / 2$. It is very gravelly clay loam, extremely gravelly clay loam, very gravelly clay, or extemely gravelly clay and has 35 to 50 percent clay. The content of weathered angular serpentinitic gravel ranges from 40 to 80 percent, by volume. Reaction is neutral or slightly alkaline.

## Hillgate Series

The Hillgate series consists of very deep, well drained soils on old terraces. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 9 percent. The mean annual precipitation is 14 to 22 inches, and the mean annual air temperature is 58 to 62 degrees $F$.
Taxonomic class: Fine, smectitic, thermic Typic Palexeralfs

## Typical Pedon

Hillgate loam, 0 to 2 percent slopes, in an area of rangeland. When described on November 21, 1988, the soil was dry throughout.

A1-0 to 3 inches; yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine tubular pores; few fine distinct light brownish gray (10YR 6/2) iron depletions; slightly acid (pH 6.2); abrupt smooth boundary.
A2-3 to 11 inches; yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 4/4) moist; strong medium angular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine and few fine tubular pores; common fine distinct light brownish gray (10YR 6/2) iron depletions; moderately acid (pH 5.6); clear smooth boundary.

A3-11 to 19 inches; yellowish brown (10YR 5/4)
loam, dark yellowish brown (10YR 4/4) moist; strong medium angular blocky structure; hard, friable, slightly sticky, and slightly plastic; few very fine roots; common very fine and few fine tubular pores; common fine faint very pale brown (10YR $7 / 3$ ) iron depletions; moderately acid ( pH 5.6 ); abrupt smooth boundary.
2Bt1- 19 to 38 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR $3 / 4$ ) moist; strong coarse prismatic structure; extremely hard, firm, moderately sticky and moderately plastic; few very fine roots; common very fine and few fine tubular pores; many moderately thick clay films; slightly acid ( pH 6.2 ); clear smooth boundary. $2 \mathrm{Bt} 2-38$ to 53 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR $3 / 4$ ) moist; strong coarse prismatic structure; extremely hard, firm, sticky and plastic; few very fine roots; common very fine tubular pores; many moderately thick clay films; neutral (pH 7.2); clear smooth boundary.
2Bt3-53 to 63 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR $3 / 4$ ) moist; moderate medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; common very fine tubular pores; many moderately thick clay films; slightly alkaline ( pH 7.5); clear smooth boundary.

2Bt4-63 to 73 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; very hard, firm, sticky and plastic; few very fine roots; common very fine tubular pores; many moderately thick clay films; slightly alkaline ( pH 7.4).

Type location: Colusa County, California; about $41 / 2$ miles west of Maxwell, California; 2,400 feet south and 2,500 feet east of the northwest corner of section 2, T. 16 N., R. 4 W., MDB\&M; 39 degrees, 16 minutes, 10 seconds north latitude and 121 degrees, 16 minutes, 20 seconds west longitude; USGS Sites, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. The soil moisture control section is dry in all parts from May 15 to Oct. 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 4,5 / 3$, $5 / 4$, or $7 / 2$ or $7.5 \mathrm{YR} 5 / 4$ and moist color of 10YR $4 / 3$, $4 / 4$, or $5 / 3$ or 7.5 YR $4 / 4$. Bleaching occurs in the lower part of the A horizon, resulting in a of color difference of one chip. This horizon is loam or clay loam and is
gravelly in some pedons. Scattered manganese accumulations are in the upper 10 inches. Reaction is moderately acid or slightly acid.

The Bt horizon has dry color of $7.5 \mathrm{YR} 4 / 6,5 / 4,5 / 5$, $5 / 6$, or $5 / 8$ or $10 Y R 5 / 3,5 / 4,5 / 6,5 / 8$, or $6 / 3$ and moist color of 7.5 YR $3 / 4,4 / 3,4 / 4,4 / 6$, or $5 / 4$ or 10 YR $3 / 3$, $3 / 4,4 / 3,4 / 4,4 / 6,5 / 4$, or $5 / 6$. The texture is clay loam or clay. This horizon has an abrupt upper boundary with an absolute clay increase of at least 15 percent. Reaction is slightly acid to moderately alkaline. The horizon has few very small white calcium carbonate masses that effervesce strongly. Base saturation is more than 75 percent in some part of the horizon.

## Holillipah Series

The Holillipah series consists of very deep, somewhat excessively drained soils on flood plains. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Sandy, mixed, thermic Typic Xerofluvents

## Typical Pedon

Holillipah loamy sand, channeled, 0 to 2 percent slopes, under annual grasses and forbs (soil survey of Sutter County, California, 1988).
A-0 to 8 inches; pale brown (10YR 6/3) loamy sand, brown (10YR 4/3) moist; weak coarse granular structure; soft, loose, nonsticky and nonplastic; many very fine and fine interstitial pores; slightly acid ( pH 6.5 ); clear smooth boundary.
C1-8 to 32 inches; white (10YR 8/1) sand, light gray (10YR 7/1) moist; massive; loose, nonsticky and nonplastic; many very fine and fine and common medium roots; many very fine and fine interstitial pores; neutral ( pH 7.0 ); abrupt wavy boundary.
C2-32 to 35 inches; light yellowish brown (10YR 6/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; many very fine and fine interstitial pores; common medium distinct strong brown (7.5YR 4/6) masses of iron; neutral ( pH 7.0 ); abrupt wavy boundary.
C3-35 to 47 inches; gray (10YR 5/3) fine sandy loam, dark brown (10YR $3 / 3$ ) moist; massive; slightly hard, friable, nonsticky and nonplastic; common very fine tubular pores; many medium distinct brown (7.5YR 5/4) masses of iron; neutral ( pH 7.0); gradual irregular boundary.

C4-47 to 61 inches; pale brown (10YR 6/3) loamy fine sand, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine tubular pores; neutral ( pH 7.0 ).
Type location: Sutter County, California; about 6.5 miles south of Yuba City; 2,100 feet north and 3,000 feet east of the intersection of O'Banion Road and Garden Highway, in the New Helvetia Land Grant (not sectionalized), T. 14 N., R. 3 W., MDB\&M; 39 degrees, 1 minute, 56 seconds north latitude and 121 degrees, 36 minutes, 25 seconds west longitude; USGS Olivehurst, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The 15 - to 48 -inch soil moisture control section is dry in all parts from May 15 to October 31 and moist in some or all parts from November 15 to May 1. The soils are commonly stratified with thick layers of sand, loamy fine sand, loamy sand, fine sandy loam, sandy loam, or silt loam. The particle-size control section is loamy sand or coarser sand. The content of organic carbon decreases irregularly with increasing depth. Reaction is slightly acid or neutral.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3$ or $6 / 2$ and moist color of $10 \mathrm{YR} 4 / 3,4 / 2$, or $3 / 3$. The texture is loamy sand or sandy loam.

The C horizon has dry color of $10 \mathrm{YR} 8 / 1,7 / 2,7 / 3$, $6 / 3,6 / 4$, or $5 / 3$ and moist color of 10YR $7 / 1,7 / 2,5 / 2$, $5 / 3,4 / 2,4 / 3,4 / 4$, or $3 / 3$.

## Hustabel Series

The Hustabel series consists of very deep, moderately well drained soils on alluvial fans. These soils formed in alluvium derived from mixed sources. Slope is 0 to 1 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Coarse-loamy, mixed, superactive, thermic Cumulic Haploxerolls

## Typical Pedon

Hustabel sandy loam, 0 to 1 percent slopes, under annual forbs and grasses. When described on May 19, 1987, the soil was moist to a depth of 20 inches and slightly moist from a depth 20 inches to a water table at a depth of 61 inches.

Ap1-0 to 3 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable,
slightly sticky and slightly plastic; many very fine and fine roots; few very fine tubular pores; neutral ( pH 6.8 ); clear smooth boundary.
Ap2-3 to 13 inches; brown (10YR 5/3) sandy loam, dark brown (10YR $3 / 3$ ) moist; weak coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine tubular pores; neutral ( pH 6.9); abrupt wavy boundary.

A1-13 to 20 inches; brown (10YR 5/3) sandy loam, dark brown (10YR $3 / 3$ ) moist; weak coarse subangular blocky structure; slightly hard, friable, very sticky and slightly plastic; many very fine roots; many very fine tubular pores; strongly effervescent; disseminated lime; moderately alkaline ( pH 8.2 ); abrupt smooth boundary.
A2-20 to 31 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; massive; slightly hard, very friable, slightly sticky and nonplastic; many very fine roots; many very fine tubular pores; strongly effervescent; disseminated lime; strongly alkaline ( pH 8.7 ); abrupt smooth boundary.
C1-31 to 35 inches; yellowish brown (10YR 5/4) and light yellowish brown (10YR 6/4) silt loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; hard, friable, very sticky and slightly plastic; many very fine roots; no pores; strongly effervescent; disseminated lime; strongly alkaline ( pH 9.0 ); abrupt smooth boundary.
C2-35 to 40 inches; yellowish brown (10YR 5/4) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; few very fine tubular pores; strongly effervescent; disseminated lime; strongly alkaline ( pH 8.8 ); abrupt smooth boundary.
C3-40 to 48 inches; light yellowish brown (10YR 6/4) silty clay loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; slightly hard, friable, very sticky and slightly plastic; few very fine roots; common very fine tubular pores; strongly effervescent; disseminated lime; common fine distinct yellowish brown (10YR 5/6) accumulations of iron and common fine prominent strong brown (7.5YR 4/6) (moist) and common medium prominent dark grayish brown (2.5YR 4/2) (moist) iron depletions; strongly alkaline ( pH 8.5); abrupt smooth boundary.

2Ab1-48 to 52 inches; dark brown (10YR 3/3) clay loam, very dark grayish brown (10YR $3 / 2$ ) moist; weak medium subangular blocky structure; slightly hard, friable, very sticky and slightly plastic; few
very fine roots; few very fine tubular pores; strongly effervescent; disseminated lime; few fine distinct gray (10YR $5 / 1$ ) accumulations of iron, common fine faint very dark gray (10YR 3/1) moist; moderately alkaline ( pH 8.2 ); clear smooth boundary.
2Ab2-52 to 61 inches; brown (10YR 4/3) sandy clay loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular pores; strongly effervescent; disseminated lime; few fine distinct gray (10YR 5/1) iron depletions, common fine faint very dark gray (10YR 3/1) moist; moderately alkaline ( pH 7.9 ).
Type location: Colusa County, California; about 1 mile east of Williams, California; 3,340 feet west and 100 feet north of the southeast corner of section 18, T. 15 N., R. 2 W., MDB\&M; 39 degrees, 08 minutes, 39 seconds north latitude and 122 degrees, 07 minutes, 25 seconds west longitude; USGS Williams, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 8 to 23 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, is 12 to 18 percent. Depth to the water table is 36 to more than 60 inches.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2$, or $4 / 3$ and moist color of $10 \mathrm{YR} 3 / 3,3 / 2$, or $4 / 3$. The texture is sandy loam. Reaction is neutral to strongly alkaline.

The C and 2Ab horizons have dry color of 10YR $6 / 4,6 / 3,5 / 4,5 / 3,5 / 2$, or $4 / 3$ and moist color of 10YR $4 / 4,4 / 3,3 / 3$, or $3 / 2$. The texture is stratified loam, silt loam, sandy clay loam, silty clay loam, or clay loam. Reaction is neutral to strongly alkaline.

## Leesville Series

The Leesville series consists of very deep, well drained soils on alluvial fans. These soils formed in alluvium derived from serpentinitic rocks. Slope ranges from 0 to 5 percent. The mean annual precipitation is 18 to 20 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

Taxonomic class: Fine-loamy over sandy or sandyskeletal, magnesic, thermic Pachic Haploxerolls

## Typical Pedon

Leesville clay loam, 2 to 5 percent slopes, in an area of rangeland. When described on August 5, 1996, the soil was dry throughout.
A1-0 to 3 inches; dark gray (10YR 4/1) clay loam, very dark gray ( $10 \mathrm{YR} 3 / 1$ ) moist; moderate fine subangular blocky structure; hard, friable, sticky and slightly plastic; few very fine, fine, and medium roots; common very fine and fine tubular pores; 5 percent gravel; neutral (pH 7.2); clear smooth boundary.
A2-3 to 16 inches; dark gray (10YR 4/1) clay loam, very dark gray (10YR 3/1) moist; moderate fine and coarse subangular blocky structure; hard, friable, sticky and slightly plastic; few fine and medium roots; common very fine and fine tubular pores; 10 percent gravel; slightly alkaline ( pH 7.8 ); clear smooth boundary.
A3-16 to 21 inches; dark gray (10YR 4/1) clay loam, very dark gray (10YR 3/1) moist; moderate fine subangular blocky structure; hard, friable, sticky and slightly plastic; few fine and medium roots; common very fine and fine tubular pores; 10 percent gravel; moderately alkaline ( pH 8.0 ); abrupt smooth boundary.
2C1-21 to 30 inches; grayish brown (10YR 5/2) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few fine and medium roots; common fine and medium interstitial and few fine tubular pores; 20 percent gravel; moderately alkaline ( pH 8.2 ); abrupt smooth boundary.
$3 C 2-30$ to 46 inches; grayish brown (10YR 5/2) very gravelly loamy sand, very dark grayish brown (10YR 3/2) moist; massive; loose when dry and moist, nonsticky and nonplastic when wet; few fine and medium roots; common fine and medium interstitial pores; 40 percent gravel; moderately alkaline ( pH 8.2 ); clear smooth boundary.
3C3-46 to 60 inches; grayish brown (10YR 5/2) extremely gravelly loamy sand, very dark grayish brown (10YR 3/2) moist; massive; loose when dry and moist, nonsticky and nonplastic when wet; few fine and medium roots; many fine and medium interstitial and few fine tubular pores; moderately alkaline ( pH 8.3 ).

Type location: Colusa County, California; about 4 miles southwest of Leesville, California; 1,300 feet east and 500 feet south of the northwest corner of
section 20, T. 15 N., R. 5 W., MDB\&M; 39 degrees, 08 minutes, 20 seconds north latitude and 122 degrees, 26 minutes, 30 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 58 to 60 degrees F . Ca to Mg ratios are $1: 3$ to 1:6. The 5 - to 16 inch soil moisture control section is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31.

The A horizon has dry color of $10 \mathrm{YR} 4 / 2,4 / 1$, or $3 / 2$ and moist color of $10 \mathrm{YR} 3 / 1$ or $2 / 2$. The texture is clay loam. The content of rock fragments ranges from 5 to 15 percent. The content of clay ranges from 25 to 35 percent. Reaction is neutral to moderately alkaline.

The C horizon has dry color of $10 \mathrm{YR} 5 / 2$ or $4 / 2$ and moist color of $10 \mathrm{YR} 4 / 2$ or $3 / 2$. The texture is gravelly, very gravelly, or extremely gravelly sandy loam or gravelly, very gravelly, or extremely gravelly loamy sand. The content of rock fragments ranges from 20 to 60 percent and averages 35 to 50 percent. The content of clay ranges from 5 to 15 percent. Reaction is moderately alkaline.

## Livermore Series

The Livermore series consists of very deep, somewhat excessively drained soils on alluvial fans. These soils formed in alluvium weathered from sedimentary rocks. Slope ranges from 5 to 9 percent. The mean annual precipitation is 19 to 22 inches, and the mean annual air temperature is 58 to 60 degrees $F$.
Taxonomic class:Loamy-skeletal, mixed, superactive, thermic Typic Haploxerolls

## Typical Pedon

Livermore loam, 5 to 9 percent slopes, in an area of rangeland. When described on August 6, 1996, the soil was dry throughout.

Ap-0 to 7 inches; brown (10YR 5/3) very gravelly loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; few fine tubular and common very fine and fine interstitial pores; 50 percent gravel; slightly acid ( pH 6.1 ); clear smooth boundary.
Bw1-7 to 19 inches; brown (10YR 5/3) very gravelly loam, very dark grayish brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and
slightly plastic; few very fine roots; many fine and medium interstitial pores; 50 percent gravel; slightly acid ( pH 6.3 ); clear smooth boundary.
Bw2-19 to 41 inches; yellowish brown (10YR 5/4)
very gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; many fine and medium interstitial pores; 50 percent gravel; neutral ( pH 6.6 ); clear smooth boundary.
C-41 to 63 inches; yellowish brown (10YR 5/4) very gravelly sandy loam, dark yellowish brown (10YR $3 / 4$ ) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; many fine interstitial pores; 50 percent gravel; neutral (pH 6.9).
Type location: Colusa County, California; about $1 / 2$ mile west of Leesville, California; 1,750 feet west and 350 feet north of the southeast corner of section 32, T. 16 N., R. 5 W., MDB\&M; 39 degrees, 11 minutes, 24 seconds north latitude and 122 degrees, 26 minutes, 13 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 60 to 63 degrees $F$. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 12 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31. The content of rock fragments ranges from 35 to 50 percent throughout the profile. The thickness of the solum ranges from 40 to 60 inches.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2$, or $4 / 3$ and moist color of $10 Y R 3 / 3,3 / 2$, or $2 / 2$. The texture is very gravelly loam. The content of clay ranges from 18 to 27 percent. Reaction is slightly acid or neutral.

The Bw horizon has dry color of 10YR $6 / 4,5 / 4$, or $5 / 3$ or $7.5 \mathrm{YR} 6 / 4,5 / 4$, or $4 / 4$ and moist color of 10 YR $4 / 6,4 / 4,4 / 3,3 / 4$, or $3 / 3$ or 7.5 YR $4 / 6,4 / 4$, or $3 / 4$. The texture is very gravelly loam, very gravelly clay loam, or very gravelly sandy clay loam. The content of clay ranges from 18 to 35 percent. Reaction is slightly acid or neutral.

The C horizon, if it occurs, has dry color of 10 YR $6 / 3$ or $5 / 4$ and moist color of 10 YR $4 / 4,4 / 3$, or $3 / 4$. The texture is very gravelly sandy loam or very gravelly loam. The content of clay is 18 to 27 percent. Reaction is slightly acid or neutral.

## Mallard Series

The Mallard series consists of very deep, somewhat poorly drained soils on alluvial fans. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 5 percent. The mean annual precipitation is 14 to 22 inches, and the mean annual air temperature is 58 to 62 degrees $F$.
Taxonomic class: Fine, mixed, superactive, thermic Pachic Argixerolls

## Typical Pedon

Mallard clay loam, 0 to 1 percent slopes, in an area of cropland. When described on July 1, 1987, the soil was dry to a depth of 3 inches and moist from a depth of 3 inches to a water table at a depth of 50 inches.
Ap-0 to 3 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong medium granular structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine interstitial pores; neutral ( pH 6.8 ); clear smooth boundary.
Bt1-3 to 8 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong medium subangular blocky structure; hard, friable, sticky and slightly plastic; common very fine roots; few very fine interstitial pores; many moderately thick clay films on faces of peds and bridging sand grains; neutral ( pH 7.0 ); gradual smooth boundary.
Bt2-8 to 15 inches; dark grayish brown (10YR 4/2) clay, very dark grayish brown (10YR $3 / 2$ ) moist; strong medium subangular blocky structure; very hard, friable, very sticky and slightly plastic; common very fine roots; few very fine interstitial pores; many moderately thick clay films on faces of peds and bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt3-15 to 28 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; very hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular and interstitial pores; common thin clay films on faces of peds and bridging sand grains; slightly alkaline ( pH 7.4 ); clear smooth boundary.
C1-28 to 44 inches; brown (10YR 5/3) clay loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine tubular pores; slightly alkaline ( pH
7.8); strongly effervescent; disseminated lime; clear smooth boundary.
C2-44 to 60 inches; yellowish brown (10YR 5/4) clay loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine and few fine tubular pores; few fine distinct light brownish gray (2.5Y 6/2) accumulations of iron, few fine prominent grayish brown (10YR 5/2) moist; strongly effervescent; segregated lime in seams and disseminated lime; moderately alkaline ( pH 8.0 ).

Type location: Colusa County, California; about 1 1⁄2 miles east of Williams, California; 1,000 feet south and 1,000 feet west of the northeast corner of section 19, T. 15 N., R. 2 W., MDB\&M; 39 degrees, 08 minutes, 38 seconds north latitude and 122 degrees, 07 minutes, 07 seconds west longitude; USGS Colusa, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 5 to 15 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 Y \mathrm{YR} 5 / 3,5 / 2,4 / 3$, or $4 / 2$ and moist color of 10 YR $3 / 3$ or $3 / 2$. The texture is clay loam or loam. Reaction is slightly acid to moderately alkaline.

The Bt horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2,4 / 4$, $4 / 3$, or $4 / 2$ and moist color of 10 YR $4 / 4,4 / 3,3 / 4,3 / 3$, or $3 / 2$. The texture is clay or clay loam. The weighted average clay content in the textural control section, the upper 20 inches of the Bt horizon, is 35 to 40 percent. Reaction is neutral to moderately alkaline.

The C horizon has dry color of $10 \mathrm{YR} 5 / 4,5 / 3$, or $4 / 3$ or $5 \mathrm{Y} 5 / 2$ and moist color of $10 \mathrm{YR} 4 / 4,4 / 3$, or $3 / 3$ or $5 \mathrm{Y} 4 / 2$. The texture is clay loam or loam. Reaction is neutral to moderately alkaline.

## Marpa Series

The Marpa series consists of moderately deep, well drained soils on mountain side slopes. These soils formed in residuum derived from schist. Slope ranges from 15 to 50 percent. The mean annual precipitation is 30 to 60 inches, and the mean annual air temperature is 47 to 58 degrees $F$.

Taxonomic class:Loamy-skeletal, mixed, active, mesic Ultic Haploxeralfs

## Typical Pedon

Marpa very gravelly sandy loam, in a forested area of Neuns-Marpa-Goulding complex, 30 to 50 percent slopes. When described on July 19, 1995, the soil was dry throughout.
Oe-0 to 2 inches; partially decomposed pine needles and oak leaves.
A-2 to 5 inches; strong brown (7.5YR 4/6) very gravelly sandy loam, dark brown (7.5YR 3/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few coarse and common fine roots; few very fine tubular pores; 45 percent gravel; slightly acid ( pH 6.2 ); clear smooth boundary.
$\mathrm{B} t 1-5$ to 14 inches; strong brown (7.5YR 5/6) very gravelly sandy clay loam, strong brown (7.5YR 4/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots; common very fine tubular pores; few thin clay films on faces of peds and between sand grains; 45 percent gravel; slightly acid ( pH 6.2 ); gradual smooth boundary.
Bt2-14 to 25 inches; strong brown (7.5YR 5/6) very gravelly sandy clay loam, strong brown (7.5YR 4/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and few coarse roots; common very fine tubular pores; few thin clay films on faces of peds and between sand grains; 40 percent gravel; slightly acid (pH 6.2); abrupt wavy boundary.
R-25 inches; hard, fractured schist bedrock.
Type location: Colusa County, California; about 200 feet uphill from the intersection of Mendocino Forest Service Roads 17NO2 and M10; about 2,500 feet west and 1,770 feet north of the southeast corner of section 14, T. 17 N., R. 8 W., MDB\&M; 39 degrees, 19 minutes, 27 seconds north latitude and 122 degrees, 43 minutes, 42 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock are 20 to 40 inches. The control section averages 35 to 50 percent rock fragments. The mean annual soil temperature is 56 to 59 degrees $F$. The 5to 18 -inch soil moisture control section is dry in all
parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 6 / 4,6 / 3$, or $5 / 3$ or $7.5 \mathrm{YR} 6 / 4,5 / 4,4 / 6$, or $4 / 4$ and moist color of 10 YR $4 / 4,4 / 3,3 / 4$, or $3 / 3$ or 7.5 YR $4 / 4,4 / 2$, or $3 / 4$. The texture is very gravelly sandy loam. The content of clay ranges from 12 to 18 percent. Reaction is moderately acid to neutral.

The Bt horizon has dry color of 10 YR 6/4, $6 / 3,5 / 6$, or $5 / 4$ or $7.5 \mathrm{YR} 6 / 4,5 / 6$, or $5 / 4$ and moist color of $10 Y R 5 / 4,4 / 4$, or $4 / 3$ or 7.5 YR $5 / 4,4 / 6$, or $4 / 4$. The texture is very gravelly clay loam or very gravelly sandy clay loam. The content of clay ranges from 27 to 35 percent. It averages at least 1.2 times that of the $A$ horizon. Reaction is strongly acid to slightly acid.

## Mayacama Series

The Mayacama series consists of moderately deep, somewhat excessively drained soils on mountains. These soils formed in residuum weathered from metamorphosed sandstone or other sandstone. Slope ranges from 30 to 75 percent. The mean annual precipitation is 30 to 50 inches, and the mean annual air temperature is 54 to 57 degrees $F$.
Taxonomic class: Loamy-skeletal, mixed, active, mesic Typic Dystroxerepts

## Typical Pedon

Mayacama gravelly coarse sandy loam, in an area of Maymen-Etsel-Mayacama complex, 30 to 75 percent slopes. When described on August 28, 1996, the soil was dry throughout.
A-0 to 10 inches; yellowish brown (10YR 5/4) gravelly coarse sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; few very fine and coarse and many fine and medium roots; many very fine interstitial pores; 25 percent gravel; slightly acid ( pH 6.3 ); clear smooth boundary.
Bw1-10 to 21 inches; light brown (7.5YR 6/4) gravelly sandy clay loam, brown (7.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few fine and medium roots; many very fine tubular pores; 30 percent gravel; strongly acid (pH 5.5); gradual smooth boundary.
Bw2-21 to 30 inches; mixed light brown (7.5YR 6/4) and strong brown (7.5YR $5 / 6$ ) very gravelly sandy clay loam, brown (7.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; many very fine tubular pores; 35 percent
gravel; strongly acid (pH 5.5); abrupt smooth boundary.
Cd-30 to 37 inches; brown (7.5YR 5/4) very gravelly sandy loam, brown (7.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; many very fine tubular pores; 50 percent gravel; strongly acid ( pH 5.5 ).
R-37 inches; hard, highly fractured fine grained sandstone.

Type Iocation: Colusa County, California; about $1 \frac{1}{4} 4$ miles north of Cold Springs Mountain; 2,480 feet east and 750 feet north of the southwest corner of section 26, T. 15 N., R. 6 W., MDB\&M; 39 degrees, 01 minute, and 49 seconds north latitude and 122 degrees, 29 minutes, and 38 seconds west longitude; USGS Clear Lake Oaks, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact is 20 to 40 inches. The textural control section has 15 to 27 percent clay and 35 to 60 percent coarse gravel. Base saturation is 40 to 60 percent throughout the profile. The mean annual soil temperature is 56 to 59 degrees $F$. The soil moisture control section, from a depth of 11 to 19 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of 10YR $5 / 4$ and moist color of 10 YR $3 / 4$. The texture is gravelly coarse sandy loam. Reaction is slightly acid or neutral.

The B horizon has dry color of 7.5 YR $6 / 4,5 / 4$, or $5 / 6$ and moist color of $7.5 \mathrm{YR} 4 / 4$. The texture is gravelly or very gravelly sandy clay loam. Reaction is strongly acid.

The C horizon, if it occurs, has dry color of 7.5YR $5 / 4$ and moist color of 7.5 YR 4/4. The texture is very gravelly sandy loam. Reaction is strongly acid.

## Maymen Series

The Maymen series consists of shallow, somewhat excessively drained soils on mountain side slopes. These soils formed in residuum weathered from sandstone and shale. Slope ranges from 30 to 75 percent. The mean annual precipitation is 30 to 50 inches, and the mean annual air temperature is 52 to 57 degrees $F$.
Taxonomic class: Loamy, mixed, active, mesic Lithic Dystroxerepts

## Typical Pedon

Maymen sandy loam, in an area of Etsel-Maymen-

Marpa association, 30 to 50 percent slopes, chaparral. When described on September 4, 1980, the soil was dry throughout.

A-0 to 3 inches; brown (10YR 5/3) sandy loam, very dark brown (10YR 2/2) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and few fine roots; many very fine and fine tubular pores; 5 percent gravel; moderately acid ( pH 6.0 ); clear smooth boundary.
Bw-3 to 16 inches; pink (7.5YR 7/4) gravelly sandy loam, strong brown (7.5YR 5/6) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine roots; many very fine and fine tubular roots; 15 percent gravel; moderately acid ( pH 6.0 ); clear wavy boundary.
R-16 inches; hard, highly fractured sandstone and shale.

Type location: Colusa County, California; go about 3 miles southeast from Cedar Camp Campground on Mendocino National Forest Service Road M5, turn east on Road 17NO2 and go 4.2 miles to the site, which is on the north side of road; 300 feet south and 1,700 feet east of the northwest corner of section 14, T. 16 N., R. 7 W., MDB\&M; 39 degrees, 14 minutes, 39 seconds north latitude and 122 degrees, 36 minutes, 12 seconds west longitude; USGS Hough Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock range from 10 to 18 inches. The mean annual soil temperature is 56 to 59 degrees $F$. The soil moisture control section, from a depth of 8 to 13 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3,6 / 4$, or $5 / 3$ or 7.5 YR $6 / 4$ and moist color of 10YR $5 / 4,4 / 2,4 / 3$, $3 / 4$, or $2 / 2$ or 7.5 YR $4 / 3,4 / 2,5 / 4$, or $4 / 4$. The texture is sandy loam. Reaction is slightly acid or moderately acid.

The B horizon has dry color of 10YR $6 / 4$ or 7.5 YR $7 / 4,6 / 4$, or $5 / 6$ and moist color of 10 YR $5 / 4$ or $4 / 3$ or 7.5 YR $5 / 6,4 / 3,4 / 4$, or $5 / 4$. The texture is gravelly sandy loam. The horizon has a base saturation of 50 to 75 percent. Reaction is moderately acid or strongly acid.

## Maywood Series

The Maywood series consists of very deep, well drained soils on flood plains. These soils formed in
alluvium derived from mixed rock sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 19 to 22 inches, and the mean annual air temperature is 58 to 60 degrees $F$.
Taxonomic class: Coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerofluvents

## Typical Pedon

Maywood gravelly loam, 0 to 2 percent slopes, occasionally flooded, in an area of abandoned cropland. When described on September 13, 1995, the soil was dry throughout.

A-0 to 16 inches; light brownish gray (10YR 6/2) gravelly loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few medium roots; few fine tubular pores; 25 percent gravel; neutral ( pH 6.7 ); clear smooth boundary.
C1-16 to 22 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and medium roots; few fine and medium tubular and common fine interstitial pores; 5 percent gravel; slightly alkaline ( pH 7.7 ); clear smooth boundary.
C2-22 to 41 inches; light brownish gray ( $2.5 \mathrm{Y} 6 / 2$ ) loam, dark grayish brown (2.5Y 4/2) moist; common fine and medium distinct dark yellowish brown (10YR 3/4) (moist) accumulations of iron; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium roots; few fine and medium tubular and common fine interstitial pores; 5 percent gravel; slightly alkaline ( pH 7.5 ); clear smooth boundary.
C3-41 to 57 inches; light brownish gray ( $2.5 \mathrm{Y} 6 / 2$ ) silt loam, dark grayish brown (2.5Y 4/2) moist; common fine distinct dark yellowish brown (10YR $3 / 4$ ) (moist) accumulations of iron; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine to coarse roots; few fine and medium tubular and common fine interstitial pores; 5 percent gravel; slightly alkaline ( pH 7.8 ); abrupt smooth boundary.
2Ab-57 to 60 inches; grayish brown (10YR 5/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine interstitial pores; slightly alkaline ( pH 7.8 ).
Type location: Colusa County, California; about 11/2 miles northwest of Stonyford, California; 2,000 feet
north and 550 feet west of the southeast corner of section 30, T. 18 N., R. 6 W., MDB\&M; 39 degrees, 23 minutes, 01 second north latitude and 122 degrees, 33 minutes, 42 seconds west longitude; USGS Stonyford, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 64 to 66 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 18 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 \mathrm{YR} 6 / 3$ or $6 / 2$ and moist color of 10YR $4 / 3$ or $4 / 2$. The texture is gravelly loam. The content of gravel ranges from 0 to 35 percent. The content of clay ranges from 12 to 18 percent. Reaction is neutral.

The C horizon has dry color of 10 YR $6 / 3$ or $5 / 2$ or $2.5 \mathrm{Y} 6 / 2$ and moist color of $10 \mathrm{YR} 4 / 3$ or $3 / 2$ or 2.5 Y $4 / 2$. The texture is loam or silt loam. The content of gravel ranges from 0 to 15 percent. It is less than 35 percent in the particle-size control section. The content of clay ranges from 12 to 18 percent. Reaction is slightly acid to slightly alkaline.

The 2Ab horizon, if it occurs, has dry color of 10YR $5 / 2$ or $2.5 \mathrm{Y} 5 / 2$ and moist color of $10 \mathrm{YR} 3 / 2$ or 2.5 Y $4 / 2$. The texture is fine sandy loam. Reaction is slightly acid to slightly alkaline.

## Millsholm Series

The Millsholm series consists of shallow, well drained soils on hills (figure 19). These soils formed in residuum derived from sandstone. Slope ranges from 3 to 75 percent. The mean annual precipitation is 14 to 28 inches, and the mean annual air temperature is 58 to 62 degrees $F$.

Taxonomic class: Loamy, mixed, superactive, thermic Lithic Haploxererts

## Typical Pedon

Millsholm loam, in an area of Millsholm-Contra Costa association, 30 to 75 percent slopes, rangeland. When described on November 15, 1995, the soil was dry throughout.

A-0 to 2 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak thin platy structure; soft, very friable, slightly sticky and slightly plastic; common very fine roots; many very fine interstitial
pores; 5 percent gravel; neutral ( pH 7.0 ); clear smooth boundary.
$\mathrm{Bt} 1-2$ to 8 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine roots; many very fine interstitial pores; 5 percent gravel; slightly alkaline ( pH 7.5 ); clear smooth boundary.
Bt2-8 to 14 inches; light yellowish brown (10YR 6/4) gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; weak very fine and fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine roots; many very fine interstitial pores; 30 percent gravel; slightly alkaline ( pH 7.5 ); abrupt smooth boundary.
R-14 inches; hard, highly fractured, fine grained sandstone.
Type location: Colusa County, California; about 11½ miles west of Williams, California; 950 feet north and 200 feet east of the southwest corner of section 5, T. 14 N., R. 4 W., MDB\&M; 39 degrees, 05 minutes, 24 seconds north latitude and 122 degrees, 20 minutes, 02 seconds west longitude; USGS Salt Canyon, California, topographic quadrangle.

## Range in Characteristics

The thickness of solum and the depth to bedrock range from 10 to 20 inches. The mean annual soil temperature is 59 to 64 degrees $F$. The soil temperature is above 47 degrees $F$ from February 28 to December 15. The soil moisture control section, from a depth of 6 to 14 inches, is dry in all parts between June 1 and October 31 and moist in all or some parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 6 / 4,6 / 3,6 / 2$, $5 / 4$, or $5 / 3$ or 7.5 YR $5 / 4,4 / 6,4 / 4$, or $4 / 3$ and moist color of $10 Y \mathrm{YR} 4 / 4,4 / 3,4 / 2,3 / 4$, or $3 / 3$ or $7.5 Y R ~ 3 / 4$. The texture is loam. The content of gravel ranges from 5 to 15 percent. The content of clay typically ranges from 15 to 25 percent. Reaction ranges from moderately acid to neutral.

The Bt horizon has dry color of 10 YR $6 / 4,5 / 6,5 / 4$, $5 / 3$, or $4 / 4 ; 7.5$ YR $5 / 6$ or $4 / 6$; or 5 YR $4 / 4$. It has moist color of 10 YR $4 / 4,4 / 3$, or $3 / 3 ; 7.5$ YR $4 / 6,4 / 4$, or $3 / 4$; or 5 YR $3 / 4$. The texture is loam, sandy clay loam, gravelly loam, or gravelly sandy clay loam. The content of gravel ranges from 5 to 35 percent. The content of clay ranges from 18 to 27 percent. Reaction is moderately acid to slightly alkaline.

## Montara Series

The Montara series consists of shallow, well drained soils on uplands. These soils formed in residuum derived from serpentinitic rocks. Slope ranges from 15 to 50 percent. The mean annual precipitation is 25 to 40 inches, and the mean annual air temperature is 55 to 60 degrees $F$.
Taxonomic class: Loamy, magnesic, thermic Lithic Haploxerolls

## Typical Pedon

Montara gravelly sandy loam, in an area of Henneke-Montara-Rock outcrop complex, 30 to 50 percent slopes. When described on August 26, 1996, the soil was dry throughout.
A1-0 to 6 inches; grayish brown (10YR $5 / 2$ ) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; massive; loose, very friable, nonsticky and nonplastic; many fine and medium and few coarse roots; many very fine interstitial pores; 20 percent gravel; moderately alkaline ( pH 8.0 ); abrupt wavy boundary.
A2-6 to 10 inches; brown (10YR 4/3) gravelly sandy loam, dark brown (10YR 3/3) moist; massive; loose, very friable, nonsticky and nonplastic; few fine and medium and common coarse roots; many very fine pores; 30 percent gravel; moderately alkaline ( pH 8.0 ); abrupt wavy boundary.
R-10 inches; hard, fractured serpentinitic rock; fractures at intervals of less than 1 inch.
Type Iocation: Colusa County, California; about 1 mile south of the radio transmitter on Cook Springs Mountain; 1,000 feet west and 1,250 feet south of the northeast corner of section 2, T. 14 N., R. 6 W., MDB\&M; 39 degrees, 05 minutes, 41 seconds north latitude and 122 degrees, 29 minutes, 18 seconds west longitude; USGS Wilbur Springs, California, topographic quadrangle.

## Range in Characteristics

The depth to bedrock is 10 to 20 inches. The content of weathered serpentinitic rock fragments ranges from 5 to 35 percent. Aboout 1 to 35 percent of the soil surface is covered with rock fragments. The calcium to magnesium ratio is $1: 1$ or less. The mean annual soil temperature is 54 to 60 degrees $F$. The soil moisture control section, from a depth of 5 to 17 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $2.5 \mathrm{Y} 5 / 2$ or 10 YR $4 / 1,5 / 1,5 / 2,4 / 3$, or $5 / 3$ and moist color of $2.5 \mathrm{Y} 3 / 2$ or
$10 \mathrm{YR} 2 / 1,3 / 1,2 / 2,3 / 3$, or $3 / 2$. The texture is gravelly sandy loam. The content of clay ranges from 10 to 25 percent. Reaction is neutral to moderately alkaline. This horizon is 6 to 17 inches thick.

## Moonbend Series

The Moonbend series consists of very deep, somewhat poorly drained soils on flood plains. These soils formed in alluvium weathered from mixed rock sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Fine-silty, mixed, superactive, thermic Pachic Haploxerolls

## Typical Pedon

Moonbend silt loam, 0 to 2 percent slopes, in an area of cropland. When described on October 24, 1988, the soil was moist throughout.
Ap-0 to 8 inches; grayish brown (10YR $5 / 2$ ) silt loam, very dark grayish brown (10YR $3 / 2$ ) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common fine tubular pores; neutral (pH 7.1); clear smooth boundary.
Bw1-8 to 19 inches; grayish brown (10YR 5/2) silty clay loam, dark brown (10YR $3 / 3$ ) moist; moderate medium prismatic structure parting to subangular blocky; hard, friable, slightly sticky and slightly plastic; few very fine roots; common fine, medium, and coarse and few very fine tubular pores; few thin silt coatings lining pores; neutral ( pH 7.0 ); clear smooth boundary.
Bw2-19 to 34 inches; grayish brown (10YR 5/2) silty clay loam, dark brown (10YR $3 / 3$ ) moist; weak medium prismatic structure parting to moderate medium subangular blocky; very hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine and common fine and medium tubular pores; common thin silt coatings lining pores; neutral (pH 7.2); clear smooth boundary.
Bw3-34 to 42 inches; grayish brown (10YR 5/2) loam, dark brown (10YR $3 / 3$ ) moist; weak medium prismatic structure parting to moderate medium subangular blocky; very hard, friable, slightly sticky and slightly plastic; few very fine roots; many fine and medium and common very fine tubular pores; neutral ( pH 7.0 ); clear smooth boundary.
BC-42 to 52 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR $3 / 3$ ) moist; moderate medium subangular blocky structure; very hard, friable,
slightly sticky and slightly plastic; few very fine roots; common fine and medium tubular pores; neutral (pH 7.0); clear smooth boundary.
C-52 to 64 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; massive; hard, friable, slightly sticky and slightly plastic; few very fine roots; many very fine tubular pores; slightly effervescent; moderately alkaline ( pH 7.9 ); clear smooth boundary.
Ab-64 to 76 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine tubular pores; slightly effervescent; moderately alkaline (pH 7.9); clear smooth boundary.
$C^{\prime}-76$ to 86 inches; light yellowish brown (10YR 6/4) loam, brown (7.5YR 4/4) moist; massive; hard, friable, nonsticky and nonplastic; many very fine tubular pores; slightly effervescent; slightly alkaline ( pH 7.7 ).
Type location: Colusa County, California; about 1 1⁄2 miles southeast of Colusa, California, in an unsectionalized area; 1,900 feet east and 450 feet north of the southwest corner of section 33, T. 16 N., R. 1 W., MDB\&M; 39 degrees, 11 minutes, 15 seconds north latitude and 121 degrees, 58 minutes, 45 seconds west longitude; USGS Meridian, California, topographic quadrangle.

## Range in Characteristics

The solum is 40 to 80 inches thick. The mean annual soil temperature is 63 to 65 degrees $F$, and the soil temperature is not below 47 degrees $F$ at any time. The soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 15 to May 1. The weighted average clay content in the 10 - to 40 -inch textural control section is 27 to 35 percent. The content of fine sand or coarser sand is 2 to 6 percent. The mollic epipedon is 25 to 42 inches thick.

The Ap horizon has dry color of 10YR 5/2 and moist color of 10 YR $3 / 3$ or $3 / 2$. The texture is silt loam. Reaction is neutral.

The Bw horizon has dry color of 10 YR $6 / 3,6 / 2,5 / 3$, or $5 / 2$ and moist color of $10 Y R 4 / 3,3 / 3$, or $3 / 2$. It is loam, silt loam, silty clay loam, or clay loam and has 18 to 35 percent clay. Reaction is neutral to moderately alkaline.

The C horizon has dry color of $10 \mathrm{YR} 6 / 4,6 / 3$, or $5 / 3$ and moist color of $10 \mathrm{YR} 4 / 4,4 / 3$, or $3 / 3$ or $7.5 \mathrm{YR} 4 / 4$.

The texture is loam or silt loam. Reaction is slightly alkaline or moderately alkaline.

## Myers Series

The Myers series consists of very deep, well drained soils in basins. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Fine, smectitic, thermic Aridic Haploxererts

## Typical Pedon

Myers clay, 0 to 2 percent slopes, in a fallowed field. When described on September 28, 1987, the soil was dry to a depth of 3 inches and moist below that depth.
Ap-0 to 3 inches; brown (10YR 4/3) clay, brown (10YR 4/3) moist; moderate fine subangular blocky structure; extremely hard, very firm, very sticky and very plastic; few very fine roots; few very fine interstitial pores; neutral ( pH 7.0 ); clear smooth boundary.
Bss1-3 to 25 inches; brown (10YR 4/3) clay, brown (10YR 4/3) moist; strong medium subangular blocky structure; extremely hard, very firm, very sticky and very plastic; few very fine roots; few very fine tubular pores; common intersecting slickensides tilted 40 to 60 degrees from vertical; many moderately thick clay films on faces of peds; neutral ( pH 7.0 ); clear smooth boundary.
Bss2-25 to 43 inches; brown (10YR 4/3) clay, brown (10YR 4/3) moist; weak medium subangular blocky structure; extremely hard, firm, very sticky and very plastic; few very fine roots; few very fine tubular pores; common intersecting slickensides tilted 40 to 60 degrees from vertical; slightly alkaline ( pH 7.5 ); clear smooth boundary.
Bss3-43 to 56 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; very hard, friable, very sticky and very plastic; few very fine roots; few very fine tubular pores; common intersecting slickensides tilted 40 to 60 degrees from vertical; moderately alkaline ( pH 8.0 ); clear smooth boundary.
B-56 to 71 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; hard, friable, very sticky and very plastic; common very fine tubular roots; many moderately thick clay films
on faces of peds; strongly effervescent; moderately alkaline ( pH 8.0 ).
Type location: Colusa County, California; about 4 miles southwest of Williams, California; 2,300 feet north and 1,600 feet west of the southeast corner of section 33, T. 15 N., R. 3 W., MDB\&M; 39 degrees, 06 minutes, 15 seconds north latitude and 122 degrees, 12 minutes, 10 seconds west longitude; USGS Cortina Creek, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 64 to 66 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, is 40 to 50 percent.

The Ap horizon has dry color of 10 YR $5 / 3$ or $4 / 3$ and moist color of $10 \mathrm{YR} 4 / 3$. The texture is clay. Reaction is slightly acid to slightly alkaline.

The Bss and $B$ horizons have dry color of 10YR $6 / 4,5 / 4,5 / 3$, or $4 / 3$ and moist color of $10 Y R ~ 4 / 4$ or $4 / 3$. The texture is clay or clay loam. Reaction is neutral to moderately alkaline.

## Neuns Series

The Neuns series consists of moderately deep, well drained soils on mountain side slopes. These soils formed in residuum derived from schist. Slope ranges from 30 to 75 percent. The mean annual precipitation is 35 to 60 inches, and the mean annual air temperature is 47 to 53 degrees $F$.

## Taxonomic class: Loamy-skeletal, mixed, active, mesic

 Typic Dystroxerepts
## Typical Pedon

Neuns very gravelly loam, in a forested area of Neuns-Bamtush-Goulding association, 30 to 50 percents slopes. When described on July 24, 1995, the soil was dry throughout.
Oe-0 to 2 inches; partially decomposed pine needles and oak leaves; abrupt smooth boundary.
A-2 to 7 inches; brown (10YR 5/3) very gravelly loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and nonplastic; common very
fine and fine roots; common very fine interstitial pores; 40 percent gravel; strongly acid (pH 5.5); clear smooth boundary.
Bt-7 to 15 inches; yellowish brown (10YR 5/4) very gravelly loam, dark yellowish brown (10YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine to medium roots; common very fine interstitial pores; 35 percent gravel and 5 percent schist cobbles; moderately acid ( pH 5.8 ); clear smooth boundary.
BC-15 to 29 inches; yellowish brown (10YR 5/4) extremely gravelly loam, dark yellowish brown (10YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and nonplastic; common fine and medium and few coarse roots; many very fine interstitial pores; 40 percent gravel and 20 percent cobbles; moderately acid ( pH 6.0 ); abrupt wavy boundary.
R-29 inches; hard, fractured schist.
Type location: Colusa County, California; about 200 feet west of Mendocino National Forest Road 17NO2, south of drainage on north slope; 2,100 feet north and 1,400 feet west of the southeast corner of section 36, T. 17 N., R. 8 W., MDB\&M; 39 degrees, 16 minutes, 55 seconds north latitude and 122 degrees, 42 minutes, 20 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 48 to 54 degrees $F$. The soil moisture control section, from a depth of 6 to 18 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year. The thickness of the solum and the depth to bedrock are 20 to 40 inches. The textural control section ranges from 7 to 18 percent clay.

The A horizon has dry color of 7.5YR $6 / 2,6 / 3,6 / 4$, or $6 / 6$ or 10YR $5 / 3,6 / 26 / 3$, or $6 / 4$ and moist color of 7.5 YR $4 / 3,4 / 4,4 / 6$ or $10 Y R 3 / 3,3 / 2,4 / 4$, or $4 / 6$. The texture is very gravelly loam. The content of gravel is 35 to 50 percent. Reaction is slightly acid or moderately acid.

The $B$ horizon has dry color of $7.5 \mathrm{YR} 7 / 6$ or $6 / 6$ or 10YR $5 / 4,6 / 3,6 / 4$, or $7 / 4$ and moist color of 7.5 YR $5 / 6$ or $6 / 6$ or $10 Y R 3 / 4,4 / 3,4 / 4$, or $5 / 4$. The texture is very gravelly or extremely gravelly sandy loam or very gravelly or extremely gravelly loam. The content of gravel is 35 to 70 percent. Reaction is slightly acid or moderately acid.

## Okiota Series

The Okiota series consists of shallow, well drained soils on mountain side slopes. These soils formed in residuum weathered from serpentinitic rocks. Slope ranges from 15 to 75 percent. The mean annual precipitation is 24 to 50 inches, and the mean annual air temperature is 49 to 60 degrees $F$.

Taxonomic class: Clayey, magnesic, thermic Lithic Argixerolls

## Typical Pedon

Okiota loam, in an area of Okiota-DubakellaHenneke complex, 15 to 50 percent slopes, under McNab cypress and manzanita. When described on May 13, 1991, the soil was moist throughout.
A-0 to 5 inches; dark reddish brown (5YR 3/2) loam, dark reddish brown (5YR 3/2) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; many fine interstitial pores; 5 percent gravel; slightly acid ( pH 6.3 ); clear smooth boundary.
Bt1-5 to 8 inches; dark reddish brown (5YR 3/3) clay loam, dark reddish brown (5YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, friable, sticky and plastic; few fine and coarse roots; common fine interstitial pores; few thin clay films on faces of peds; 10 percent gravel; slightly acid (pH 6.2); clear smooth boundary.
Bt2-8 to 15 inches; dark reddish brown (5YR 3/3) clay, dark reddish brown (5YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, sticky and plastic; few coarse roots; few very fine interstitial pores; 10 percent gravel; slightly acid (pH 6.1); abrupt wavy boundary.
R-15 inches; fractured, slightly weathered peridotite; rock fractures filled with material from the Bt2 horizon.

Type location: Colusa County, California; about 2 miles north of Cold Springs Mountain; 2,300 feet west and 300 feet north of the southeast corner of section 23 , T. 15 N., R. 6 W., MDB\&M; 39 degrees, 07 minutes, 20 seconds north latitude and 122 degrees, 29 minutes, 35 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock are 10 to 20 inches. About 10 to 40 percent of the soil surface is covered with gravel. The content of rock fragments is less than 15 percent in the control
section. The mean annual soil temperature is 58 to 62 degrees $F$. The soil moisture control section, from a depth of 6 to 15 inches is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of 7.5 YR $4 / 4,3 / 4$, or $3 / 2$ or 5 YR $4 / 4,3 / 4$, or $3 / 2$ and moist color of 7.5 YR $4 / 3,4 / 2,3 / 3$, or $3 / 2$ or 5 YR $4 / 3,4 / 2,3 / 3$, or $3 / 2$. The texture is loam. The content of organic carbon is 2 to 4 percent. Base saturation is more than 90 percent. Reaction is slightly acid to slightly alkaline.

The Bt horizon has dry color of 5 YR $3 / 3,4 / 4$, or $5 / 4$ and moist color of 5 YR $3 / 3,3 / 4$, or $4 / 4$. This horizon is clay or clay loam and has 35 to 50 percent clay and 5 to 15 percent gravel. Reaction is slightly acid to slightly alkaline.

## Positas Taxadjunct

The Positas taxadjunct consists of very deep, well drained soils on dissected stream terraces. These soils formed in alluvium weathered from mixed rock sources. Slope ranges from 30 to 75 percent. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

Taxonomic class: Clayey-skeletal, smectitic, thermic Mollic Palexeralfs

## Typical Pedon

Positas gravelly sandy loam, in an area of Goldeagle-Positas-Balcom complex, 30 to 75 percent slopes; described on November 6, 1990.

A1-0 to 2 inches; dark grayish brown (10YR 4/2) gravelly sandy loam, very dark brown (10YR 2/2) moist; weak medium platy structure; slightly hard, friable, nonsticky and nonplastic; many very fine roots; many very fine interstitial and common very fine tubular pores; 25 percent gravel; strongly acid ( pH 5.5); clear smooth boundary.

A2-2 to 9 inches; brown (10YR 4/3) gravelly sandy loam, very dark brown (10YR 2/2) moist; massive; slightly hard, friable, nonsticky and nonplastic; many very fine roots; many very fine interstitial and common very fine tubular pores; 25 percent gravel; strongly acid ( pH 5.5 ); gradual smooth boundary.

A3-9 to 21 inches; brown (10YR 5/3) gravelly sandy loam, dark brown (10YR 3/3) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine interstitial and common very fine tubular pores; 30 percent gravel; moderately acid ( pH 5.6 ); abrupt wavy boundary.

2Bt1-21 to 34 inches; yellowish brown (10YR 5/4) gravelly clay, brown (7.5YR 4/4) moist; strong coarse
prismatic structure; very hard, firm, very sticky and plastic; common very fine and few fine roots; common very fine interstitial and tubular pores; common moderately thick reddish brown (5YR 4/4) and brown (7.5YR 4/4) clay films on faces of peds and lining pores; 20 percent gravel; strongly acid ( pH 5.5 ); clear wavy boundary.

2Bt2-34 to 50 inches; dark yellowish brown (10YR 4/4) very gravelly clay, brown (7.5YR 4/4) moist; massive; very hard, firm, very sticky and plastic; few very fine roots; few very fine interstitial and tubular pores; common moderately thick reddish brown (5YR $4 / 4$ ) and brown (7.5YR 4/4) clay films on faces of peds and lining pores; 45 percent gravel; strongly acid ( pH 5.4); gradual smooth boundary.

2Bt3-50 to 62 inches; yellowish brown (10YR 5/4) very gravelly clay, brown (7.5YR 4/4) moist; massive; very hard, firm, very sticky and plastic; few very fine roots; few very fine interstitial and tubular pores; few moderately thick reddish brown (5YR 4/4) clay films on faces of peds and lining pores; black, 1- to 2 -inch manganese stains at the lower boundary; 50 percent gravel; strongly acid (pH 5.5); gradual smooth boundary.

2Bt4-62 to 80 inches; yellowish brown (10YR 5/4) very gravelly clay, brown (7.5YR 4/4) moist; massive; very hard, firm, very sticky and plastic; few very fine roots; few very fine interstitial and tubular pores; few moderately thick reddish brown (5YR 4/4) clay films on faces of peds and lining pores; 35 percent gravel; moderately acid ( pH 6.0 ).
Type Iocation: Colusa County, California; about 8 miles west-southwest of Arbuckle, California; 1,500 feet east and 1,800 feet north of the southwest corner of section 16, T. 13 N., R. 3 W., MDB\&M; 38 degrees, 58 minutes, 22 seconds north latitude and 122 degrees, 12 minutes, 7 seconds west longitude; USGS Rumsey, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is about 62 degrees $F$, and the soil temperature is above 47 degrees $F$ the entire year. The soil moisture control section, from a depth of 4 to 12 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to May 31. The thickness of the solum ranges from 40 to 80 inches.

The A horizon has dry color of $10 \mathrm{YR} 4 / 2,4 / 3$, or $5 / 3$ and moist color of $10 Y R 2 / 2$ or $3 / 3$ or $7.5 Y R 3 / 4$. The texture is gravelly sandy loam or gravelly loam in the
lower part. The content of gravel ranges from 15 to 35 percent. Reaction is strongly acid to neutral.

The Bt horizon has dry color of $10 \mathrm{YR} 4 / 4$ or $5 / 4$, 7.5 YR $4 / 4$ or $4 / 6$, or 5 YR $4 / 3$ or $4 / 4$ and moist color of 10 YR $3 / 3,4 / 3$, or $4 / 4$; 7.5 YR $3 / 4,4 / 4$, or $4 / 6$; or 5 YR $3 / 3$ or $3 / 4$. The $5 Y R$ hue does not occur in some pedons. The texture is gravelly or very gravelly clay. The content of gravel ranges from 20 to 50 percent. By weighted average, the content of rock fragments in the textural control section ranges from 35 to 50 percent. The content of clay ranges from 40 to 60 percent. The upper boundary of the Bt horizon is abrupt and has 20 to 30 percent more total clay than the overlying A horizon. Reaction is strongly acid or moderately acid.

The Positas soils mapped in Colusa County are a taxadjunct to the Positas series because of the clayeyskeletal textural family.

## Riverwash

Riverwash consists of very deep alluvial material in areas of stream channels that are frequently flooded. These areas are highly dynamic and change with each flood. They support little or no vegetation because of the flooding. Because of instability, no attempt is made to classify the material. These areas are subject to constant erosion and deposition during floods.

Riverwash consists of erratically deposited and stratified layers of sand, gravel, and cobbles. Small layers of finer textured soil material may be stratified with the coarser sediments, which dominate the riverwash.

## Saltcanyon Series

The Saltcanyon series consists of very deep, well drained soils on alluvial fans. These soils formed in alluvium derived from mixed rock sources. Slope ranges from 1 to 15 percent. The mean annual precipitation is 18 to 22 inches, and the mean annual air temperature is 58 to 62 degrees $F$.
Taxonomic class: Fine-loamy, mixed, superactive, thermic Pachic Argixerolls

## Typical Pedon

Saltcanyon loam, 1 to 5 percent slopes, in an area of rangeland. When described on October 11, 1995, the soil was dry throughout.

A-0 to 13 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak fine subangular blocky
structure; very friable, slightly sticky and slightly plastic; common very fine roots; many very fine interstitial pores; 10 percent gravel; neutral ( pH 7.0); clear smooth boundary.
$\mathrm{Bt} 1-13$ to 25 inches; brown (10YR 5/3) clay loam, dark brown (10YR $3 / 3$ ) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few fine tubular pores; few thin clay films on faces of peds; 10 percent gravel; neutral ( pH 7.2); gradual smooth boundary.

Bt2-25 to 43 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common fine tubular pores; common thin clay films on faces of peds; 10 percent gravel; slightly alkaline (pH 7.5); clear smooth boundary.
Bt3-43 to 61 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common fine tubular pores; common thin clay films on faces of peds; 10 percent gravel; slightly alkaline ( pH 7.7 ).

Type location: Colusa County, California; about 12 miles west of Williams, California; 2,200 feet east and 2,250 feet north of the southwest corner of section 6, T. 14 N., R. 4 W., MDB\&M; 39 degrees, 05 minutes, 28 seconds north latitude and 122 degrees, 20 minutes, 40 seconds west longitude; USGS Salt Canyon, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 60 to 62 degrees $F$. The content of rock fragments ranges from 0 to 15 percent throughout the profile. Reaction is neutral or slightly alkaline throughout the profile. Unless the soils are irrigated, the soil moisture control section, from a depth of 5 to 15 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2$, or $4 / 3$ and moist color of $10 \mathrm{YR} 3 / 3,3 / 2$, or $2 / 2$. The texture is loam. The content of clay is 12 to 27 percent.

The Bt horizon generally has dry color of $10 \mathrm{YR} 5 / 3$, $5 / 2$, or $4 / 3$ and moist color of $10 Y \mathrm{YR} 3 / 3,3 / 2$, or $2 / 2$. In the lower part of the horizon, the color may be 10YR $5 / 4$ dry and 10YR $3 / 4$ moist. The texture is loam, sandy clay loam, or clay loam. The content of clay is 18 to 35 percent.

## Scribner Series

The Scribner series consists of very deep, poorly drained soils on flood plains. These soils formed in alluvium derived from mixed sources. Slope is 0 to 1 percent. The mean annual precipitation is 13 to 16 inches, and the mean annual air temperature is 59 to 62 degrees $F$.
Taxonomic class: Fine-loamy, mixed, superactive, thermic Cumulic Endoaquolls

## Typical Pedon

Scribner silt loam, 0 to 1 percent slopes, in a fallow rice paddy. When described on May 20, 1987, the soil was dry to a depth of 3 inches and moist from a depth of 3 inches to a water table at a depth of 40 inches.
Ap-0 to 6 inches; grayish brown (2.5Y 5/2) silt loam, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; moderate coarse subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine interstitial and tubular pores; many fine prominent brownish yellow (10YR 6/6) accumulations of iron, many fine prominent dark yellowish brown (10YR 4/6) moist; strongly acid (pH 5.3); abrupt smooth boundary.
A-6 to 12 inches; grayish brown (2.5Y 5/2) clay loam, very dark gray ( $10 \mathrm{YR} 3 / 1$ ) moist; moderate coarse subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine interstitial and tubular pores; few thin clay films lining pores; common fine prominent brownish yellow (10YR 6/8) accumulations of iron, common fine prominent dark yellowish brown (10YR 3/6) moist; moderately acid (pH 5.6); abrupt smooth boundary.
Ab1-12 to 20 inches; gray (10YR 5/1) clay loam, very dark gray (10YR 3/1) moist; weak medium subangular blocky structure; hard, friable, very sticky and very plastic; common very fine roots; common very fine and few fine tubular pores; common thin clay films bridging sand grains and few thin clay films lining pores; few fine prominent yellowish brown ( $10 \mathrm{YR} 5 / 6$ ) accumulations of iron, few fine faint very dark grayish brown (10YR 3/2) moist; slightly acid ( pH 6.3 ); clear smooth boundary.
Ab2-20 to 33 inches; dark grayish brown (2.5Y 4/2) loam, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; weak medium subangular blocky structure; slightly hard, friable, very sticky and very plastic; few very
fine roots; common very fine and few fine tubular pores; common thin clay films bridging sand grains and few thin clay films lining soil pores; effervescent; many fine faint grayish brown (2.5Y $5 / 2$ ) accumulations of iron, many fine prominent (10YR 3/1) moist; neutral ( pH 6.8 ); clear smooth boundary.
Ab3-33 to 41 inches; dark grayish brown (2.5Y 4/2) loam, very dark grayish brown (2.5Y 3/2) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; common medium prominent yellowish brown (10YR 5/4) accumulations of iron, common medium distinct brown (10YR 4/3) moist; slightly alkaline ( pH 7.8 ); clear smooth boundary.
C-41 to 60 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; lime in soft seams; few medium faint yellowish brown (10YR $5 / 4$ ) accumulations of iron, few medium faint dark yellowish brown (10YR 4/4) moist; slightly alkaline ( pH 7.5 ).

Type location: Colusa County, California; about 3½ miles west of Meridian, California; 1,050 feet south and 500 feet west of the northeast corner of section 21, T. 15 N., R. 1 W., MDB\&M; 39 degrees, 08 minutes, 28 seconds north latitude and 121 degrees, 58 minutes, 18 seconds west longitude; USGS Meridian, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 20 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15.

The Ap horizon has dry color of $2.5 \mathrm{Y} 5 / 2$ and moist color of $10 \mathrm{YR} 3 / 2,2.5 \mathrm{Y} 3 / 2$, or $5 \mathrm{Y} 3 / 2$. The texture is silt loam. Reaction is strongly acid to neutral.

The A and Ab horizons have dry color of $10 Y R 5 / 2$, $5 / 1$, or $3 / 2$ or $2.5 \mathrm{Y} 5 / 2$ or $4 / 2$ and moist color of 10 YR $3 / 2$ or $3 / 1,2.5 \mathrm{Y} 3 / 2$ or $4 / 2$, or $5 \mathrm{Y} 3 / 2$. The texture is clay loam, silt loam, or loam. Reaction is neutral to moderately alkaline.

The C horizon has dry color of 10YR $5 / 3$ or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 3,4 / 2,3 / 3$, or $3 / 1$ or $5 \mathrm{Y} 4 / 1$. The
texture is silt loam or loam. Reaction is slightly alkaline or moderately alkaline.

## Sehorn Series

The Sehorn series consists of moderately deep, well drained soils on foothills. These soils formed in residuum weathered from calcareous sandstone and shale. Slope ranges from 9 to 50 percent. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Fine, smectitic, thermic Aridic Haploxererts

## Typical Pedon

Sehorn clay, in an area of Altamont-Sehorn complex, 15 to 30 percent slopes, under annual grasses and forbs. When described on September 21, 1993, the soil was dry throughout.
A—0 to 5 inches; light olive brown (2.5Y $5 / 3$ ) silty clay, olive brown ( $2.5 \mathrm{Y} 4 / 3$ ) moist; strong coarse prismatic structure parting to moderate medium subangular blocky; hard, firm, slightly sticky and slightly plastic; common very fine roots; common very fine low-continuity interstitial pores; neutral ( pH 7.0 ); abrupt smooth boundary.
Bw-5 to 9 inches; light olive brown (2.5Y 5/3) silty clay, olive brown (2.5Y 4/3) moist; strong coarse prismatic structure parting to moderate medium subangular blocky; extremely hard, firm, sticky and plastic; few very fine roots; common very fine low-continuity interstitial pores; common prominent patchy pressure faces on peds; noneffervescent; 1 percent gravel; neutral (pH 7.0); gradual wavy boundary.
Bss1—9 to 19 inches; light olive brown (2.5Y 5/3) silty clay, olive brown (2.5Y 4/3) moist; strong coarse prismatic structure parting to moderate medium subangular blocky; extremely hard, very firm, sticky and very plastic; few very fine and fine roots; common very fine low-continuity interstitial and tubular pores; few prominent discontinuous intersecting slickensides on faces of peds and common prominent patchy pressure faces on peds; noneffervescent; 5 percent gravel; neutral ( pH 7.0 ); clear smooth boundary.
Bss2-19 to 26 inches; light yellowish brown (2.5Y $6 / 3$ ) gravelly silty clay, light olive brown (2.5Y 5/3) moist; strong coarse prismatic structure parting to moderate medium subangular blocky; extremely hard, firm, sticky and very plastic; few
very fine and fine roots; common very fine lowcontinuity interstitial and tubular pores; few prominent discontinuous intersecting slickensides on faces of peds and common prominent patchy pressure faces on peds; noneffervescent; 15 percent gravel; neutral ( pH 7.0 ); abrupt smooth boundary.
BC-26 to 35 inches; light yellowish brown (10YR 6/4) extremely gravelly silty clay, light olive brown (2.5Y $5 / 3$ ) moist; moderate fine subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; few very fine roots; common very fine low-continuity interstitial pores; noneffervescent; 80 percent gravel; neutral ( pH 7.0); gradual irregular boundary.

R-35 inches; hard, highly fractured, fine grained sandstone with 5 percent soil material in fractures.
Type location: Colusa County, California; about 6 miles northwest of Sites, California; 1,500 feet east and 550 feet south of the northwest corner of section 8, T. 7 N., R. 4 W., MBD\&M; 39 degrees, 20 minutes, 44 seconds north latitude and 122 degrees, 19 minutes, 23 seconds west longitude; USGS Sites, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 64 to 66 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 7 to 21 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 35 inches, is 40 to 60 percent. The depth to highly fractured and weathered shale ranges from 20 to 40 inches.

The A horizon has dry color of $10 \mathrm{YR} 5 / 4,5 / 3$, or $4 / 4$ or $2.5 \mathrm{Y} 5 / 3$ and moist color of $10 \mathrm{YR} 4 / 3,3 / 3$, or $4 / 4$ or $2.5 \mathrm{Y} 4 / 3$. The texture is silty clay. Reaction is slightly acid or neutral.

The $B$ horizon has dry color of $10 Y R 5 / 4,5 / 3$, or $6 / 4$ or $2.5 \mathrm{Y} 5 / 3$ or $6 / 3$ and moist color of 10YR $4 / 4$ or $4 / 3$ or $2.5 \mathrm{Y} 4 / 3$ or $5 / 3$. Reaction is neutral or slightly alkaline. The texture is silty clay or clay. Some pedons have very gravelly or extremely gravelly horizons in the lower part.

## Sheetiron Series

The Sheetiron series consists of moderately deep, well drained soils on mountains. These soils formed in residuum weathered from mica-quartz schist. Slope
ranges from 30 to 75 percent. The mean annual precipitation is 40 to 60 inches, and the mean annual air temperature is 47 to 53 degrees $F$.

Taxonomic class: Loamy-skeletal, mixed, active, mesic Typic Dystroxerepts

## Typical Pedon

Sheetiron gravelly sandy loam, in an area of Sheetiron-Deadwood association, 30 to 50 percent slopes (soil survey of Lake County, California, 1989).

Oi-0 to 1 inch; decomposed and partially decomposed conifer litter consisting of twigs, bark, needles, and cones.
A1-1 to 3 inches; brown (10YR 5/3) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; moderate very fine and fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine and common medium roots; many very fine, fine, and medium interstitial pores; 30 percent gravel; strongly acid (pH 5.5); clear wavy boundary.
A2-3 to 8 inches; pale brown (10YR 6/3) very gravelly sandy loam, brown (10YR 4/3) moist; moderate very fine and fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine and common coarse roots; common very fine, fine, and medium interstitial pores; few thin gray mica and silt coatings on faces of peds and in pores; 50 percent gravel; strongly acid ( pH 5.5 ); clear wavy boundary.
Bw1-8 to 17 inches; pale brown (10YR 6/3) very gravelly sandy loam, brown (10YR 5/3) moist; moderate fine and medium subangular blocky structure; soft, friable, slightly sticky and nonplastic; common very fine and fine, many medium, and common coarse roots; common very fine, fine, and medium interstitial pores; common moderately thick gray mica and silt coatings on faces of peds and in pores; 50 percent gravel and 5 percent cobbles; strongly acid ( pH 5.5 ); gradual wavy boundary.
Bw2-17 to 29 inches; very pale brown (10YR 7/3) extremely gravelly sandy loam, yellowish brown (10YR 5/4) moist; moderate fine and medium subangular blocky structure; soft, friable, slightly sticky and nonplastic; common very fine, fine, and medium interstitial pores; common moderately thick gray mica and silt coatings on faces of peds and in pores; 55 percent gravel and 5 percent cobbles; strongly acid (pH 5.5); abrupt irregular boundary.
R-29 inches; hard, fractured mica-quartz schist; fractures that are 1 to 4 inches wide and 10 to 39
inches apart; soil material and roots extending down into the fractures.

Type location: Lake County, California; in Mendocino National Forest, about 0.9 mile east on Road 20N02 from its intersection with Road 20N11 and 0.3 mile north on a logging road; 1,850 feet north and 2,000 feet east of the southwest corner of section 23, T. 20 N., R. 9 W., MDB\&M; 39 degrees, 34 minutes, 14 seconds north latitude and 122 degrees, 50 minutes, 22 seconds west longitude; USGS Kneecap Ridge, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact is 20 to 40 inches. Base saturation is 40 to 60 percent throughout the profile. Reaction is strongly acid or moderately acid throughout the profile. The mean annual soil temperature is 47 to 54 degrees $F$. The soil moisture control section, from a depth of 11 to 28 inches, is dry in all parts from June 1 to October 31.

The A horizon has dry color of 10YR $5 / 3,5 / 4,6 / 3$, $6 / 4$, or $7 / 3$ and moist color of 10 YR $3 / 2,3 / 3,4 / 3,4 / 4$, or $5 / 3$. Dry value of 5 or less and moist value and chroma of 3 or less occur only in the upper 3 to 6 inches. The horizon has 10 to 25 percent clay and 20 to 50 percent gravel and cobbles.

The B horizon has dry color of $10 Y \mathrm{Y} ~ 6 / 2,6 / 3,7 / 2$, or $7 / 3$ and moist color of 10 YR $5 / 3$ or $5 / 4$ or 2.5 YR $5 / 3$ or $5 / 4$. The texture is very gravelly sandy loam or extremely gravelly sandy loam. The content of gravel and cobbles ranges from 35 to 70 percent. The content of clay ranges from 12 to 25 percent.

## Skyhigh Series

The Skyhigh series consists of moderately deep, well drained soils on hills. These soils formed in residuum weathered from shale. Slope ranges from 15 to 50 percent. The mean annual precipitation is 18 to 28 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

## Taxonomic class: Fine, smectitic, thermic Mollic

 Haploxeralfs
## Typical Pedon

Skyhigh loam, in a brush-covered area of SkyhighMillsholm complex, 15 to 50 percent slopes. When described on November 9, 1990, the soil was dry throughout.

A-0 to 3 inches; brown (10YR 4/3) loam, dark brown (10YR 3/3) moist; weak medium platy structure; soft, very friable, slightly sticky and slightly plastic;
few very fine roots; common very fine interstitial pores; moderately acid (pH 5.7); 5 percent angular shale fragments; clear smooth boundary.
Bt1-3 to 8 inches; dark yellowish brown (10YR 4/4) gravelly clay loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots; common fine interstitial and few fine tubular pores; common thin clay films on faces of peds; slightly acid ( pH 6.1 ); 20 percent angular shale fragments; clear smooth boundary.
Bt2—8 to 25 inches; dark yellowish brown (10YR 4/4) gravelly clay, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, sticky and plastic; few fine and medium roots; common fine tubular pores; many thin clay films; 30 percent angular shale fragments; moderately acid (pH 5.8); clear smooth boundary.
Bt3—25 to 37 inches; dark yellowish brown (10YR 4/4) gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, sticky and plastic; few fine and medium roots; few fine tubular pores; few thin clay films on faces of peds; 30 percent angular shale fragments. moderately acid (pH 5.7); abrupt smooth boundary. R-37 inches; hard, fractured shale.

Type Iocation: Colusa County, California; about 2½ miles west of Wilbur Springs, California; 1,100 feet north and 50 feet east of the southwest corner of section 19, T. 14 N., R. 5 W., MDB\&M; 39 degrees, 02 minutes, 35 seconds north latitude and 122 degrees, 27 minutes, 15 seconds west longitude; USGS Wilbur Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of solum and the depth to bedrock range from 20 to 40 inches. The mean annual soil temperature is about 59 to 64 degrees $F$, and the soil temperature is above 47 degrees $F$ from February 28 to December 15. The soil moisture control section, from a depth of 6 to 19 inches, is moist in some or all parts between November 1 and May 31 and dry the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 4 / 3,4 / 4$, or $5 / 3$ or 7.5 YR $5 / 3$ or $4 / 4$ and moist color of $10 \mathrm{YR} 3 / 3$ or 7.5 YR $4 / 3$ or $3 / 3$. The content of gravel ranges from 5 to 15 percent. The content of clay ranges from 24 to 32 percent. The texture is loam. Reaction is moderately acid or slightly acid.

The Bt horizon has dry color of 10YR $5 / 4$ or $4 / 4$ or 7.5 YR $4 / 4$ or $4 / 3$ and moist color of 10 YR $4 / 4$ or $4 / 3$ or
7.5 YR $4 / 4,4 / 3$, or $3 / 3$. The texture is gravelly clay loam, gravelly clay, or gravelly sandy clay loam. The content of gravel ranges from 20 to 35 percent. The content of clay ranges from 35 to 50 percent. Reaction is moderately acid or slightly acid.

## Sleeper Series

The Sleeper series consists of deep, well drained soils on hills. These soils formed in material weathered from sandstone, shale, and siltstone. Slopes are 15 to 50 percent. The mean annual precipitation is 18 to 22 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

## Taxonomic class: Fine, smectitic, thermic Mollic Haploxeralfs

## Typical Pedon

Sleeper clay loam, in an area of Skyhigh-SleeperMillsholm association, 30 to 50 percent slopes, rangeland. When described on June 25, 1996, the soil was dry throughout.

A1-0 to 5 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; strong coarse prismatic structure; hard, firm, slightly sticky and slightly plastic; common very fine roots; few fine interstitial pores; noneffervescent; slightly alkaline (pH 7.5); clear smooth boundary.
A2-5 to 9 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; strong coarse prismatic structure; hard, friable, slightly sticky and slightly plastic; few very fine roots; few fine interstitial pores; many thin clay films on faces of peds; very slightly effervescent; slightly alkaline (pH 7.5); clear smooth boundary.
Bt1-9 to 19 inches; brown (10YR 5/3) clay, brown (10YR 4/3) moist; strong coarse angular blocky structure; hard, firm, slightly sticky and slightly plastic; few very fine roots; few fine interstitial and tubular pores; many thin clay films on faces of peds; slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.

Bt2-19 to 35 inches; brown (10YR 5/3) clay, brown (10YR 4/3) moist; strong coarse angular blocky structure; hard, firm, slightly plastic and slightly plastic; few very fine roots; common fine interstitial pores; common wedge-shaped aggregates; many thin clay films on faces of peds; strongly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Bt3-35 to 53 inches; yellowish brown (10YR 5/4) clay loam, brown (10YR 4/3) moist; massive; hard, firm, slightly sticky and slightly plastic; few fine
interstitial and tubular pores; many thin clay films on faces of peds; strongly effervescent; 10 percent gravel in the lower part; slightly alkaline ( pH 7.8 )
R-53 inches; hard, fine grained sandstone.
Type location: Colusa County, California; about 2 miles west down a road extending from the intersection of Highway 16 and Highway 20, about $2^{3 / 4}$ miles south of the road; 50 feet north and 1,500 feet east of the southwest corner of section 14, T. 13 N., R. 5 W., MDB\&M; 38 degrees, 57 minutes, 54 minutes north latitude and 122 degrees, 23 minutes, 00 seconds west longitude; USGS Wilson Valley, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact is 40 to 60 inches. The mean annual soil temperature is 59 to 63 degrees $F$. The soil moisture control section, from a depth of 6 to 16 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts from November 1 to June 1.

The A horizon has dry color of 10YR $5 / 3$ or $5 / 2$ and moist color of $10 Y \mathrm{YR} 3 / 3$ or $3 / 2$. The texture is clay loam. Reaction is neutral or slightly alkaline.

The Bt horizon has dry color of $10 \mathrm{YR} 5 / 4$ or $5 / 3$ or 7.5 YR $5 / 4$ or $5 / 3$ and moist color of $10 Y R 4 / 4,4 / 3$, or $3 / 4$ or $7.5 \mathrm{YR} 4 / 4$ or $3 / 4$. The texture is clay loam, clay, or gravelly clay loam. The content of rock fragments ranges from 0 to 35 percent. Reaction is neutral or slightly alkaline.

## Snook Series

The Snook series consists of very shallow, somewhat excessively drained soils on mountains. These soils formed in residuum derived from sandstone or shale. Slope ranges from 30 to 75 percent. The mean annual precipitation is 30 to 50 inches, and the mean annual air temperature is 52 to 58 degrees $F$.

Taxonomic class: Loamy, mixed, superactive, nonacid, thermic Lithic Xerorthents

## Typical Pedon

Snook gravelly sandy loam, in an area of Maymen-Etsel-Snook complex, 30 to 75 percent slopes. When described on August 26, 1996, the soil was dry throughout.

A1-0 to 1 inch; yellowish brown (10YR 5/4) gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; weak thin platy structure; loose when dry
and moist, slightly sticky and nonplastic when wet; common very fine roots; many very fine interstitial pores; 20 percent gravel; strongly acid ( pH 5.5 ); abrupt smooth boundary.
A2-1 to 8 inches; yellowish brown (10YR 5/4) gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; loose when dry and moist, slightly sticky and nonplastic when wet; few very fine roots; many very fine interstitial pores; 30 percent gravel; strongly acid ( pH 5.5 ); abrupt wavy boundary.
R-8 inches; hard, fractured sandstone.
Type location: Colusa County, California; about 11/4 miles south of Cold Springs Mountain; 250 feet south and 1,400 feet east of the northwest corner of section 12, T. 14 N., R. 6 W., MDB\&M; 39 degrees, 04 minutes, 58 seconds north latitude and 122 degrees, 28 minutes, 44 seconds west Iongitude; USGS Lower Lake, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to lithic contact are 4 to 10 inches. About 20 to 80 of the soil surface is covered with rock fragments. The content of clay is 10 to 25 percent. The content of gravel and cobbles ranges from 5 to 35 percent. The mean annual soil temperature is 56 to 59 degrees $F$. The soil moisture control section, from the surface to a depth of 5 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of 7.5 YR $4 / 4,5 / 4$, or 6/2 or 10YR $5 / 4,6 / 2,6 / 3$, or $6 / 4$ and moist color of 7.5 YR $3 / 4$ or $4 / 2$ or 10 YR $3 / 4,4 / 3$, or $4 / 4$. The texture is gravelly sandy loam. Reaction is strongly acid or moderately acid.

## Speaker Series

The Speaker series consists of moderately deep, well drained soils on mountain side slopes. These soils formed in residuum and colluvium weathered from sedimentary rocks. Slope ranges from 30 to 50 percent. The mean annual precipitation is 35 to 50 inches, and the mean annual air temperature is 50 to 54 degrees $F$.
Taxonomic class: Fine-loamy, mixed, active, mesic Ultic Haploxeralfs

## Typical Pedon

Speaker gravelly loam, in a wooded area of Neuns-Bamtush-Speaker complex, 30 to 50 percent slopes.

When described on August 10, 1980, the soil was dry throughout.

Oi-0 to 1 inch; layer of manzanita leaves and knobcone pine needles and stems.
A-1 to 10 inches; very pale brown (10YR 7/4) gravelly loam, dark brown (7.5YR 3/4) moist; moderate medium subangular blocky structure; soft, loose, slightly sticky and nonplastic; few fine roots; few very fine tubular pores; 20 percent gravel; slightly acid (pH 6.5); gradual wavy boundary.
Bt1-10 to 16 inches; strong brown (7.5YR 5/8) gravelly clay loam, strong brown (7.5YR 4/6) moist; strong medium and coarse angular blocky structure; slightly hard, very friable, sticky and plastic; few fine roots; few very fine tubular pores; few thin clay films lining pores; 20 percent gravel; moderately acid ( pH 6.0 ); gradual wavy boundary.
Bt2-16 to 26 inches; reddish brown (2.5YR 4/4) gravelly clay loam, dark reddish brown (2.5YR $4 / 3$ ) moist; strong coarse angular blocky structure; slightly hard, very friable, sticky and plastic; few fine roots; few very fine tubular pores; common thick clay films on faces of peds; 25 percent gravel; moderately acid (pH 6.0); gradual wavy boundary.
Cr -26 to 36 inches; reddish brown (2.5YR 4/4), weathered schist; yellow (2.5Y 7/8) bands; many thick clay films on faces of peds; fractured into plates 4 to 75 millimeters in size.
Type Iocation:Colusa County, California; along Pine Ridge Road (17NO2), about 0.1 mile east of the Cooley Ranch gate, on the south side of the road; 2,300 feet south and 2,000 feet east of the northwest corner of section 9, T. 16 N., R. 7 W., MDB\&M; 39 degrees, 15 minutes, 02 seconds north latitude and 122 degrees, 38 minutes, 32 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to paralithic contact range from 20 to 40 inches. Reaction is slightly acid or moderately acid throughout the profile. The mean annual soil temperature is 54 to 59 degrees $F$. The soil moisture control section, from a depth of 6 to 18 inches, is dry in some part from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 7 / 4,5 / 3$, or $5 / 4$ or 7.5 YR $5 / 4$ and moist color of 7.5 YR $3 / 4$ or $4 / 6$. The texture is gravelly loam.

The Bt horizon has dry color of $7.5 \mathrm{YR} 5 / 6,5 / 8$, or 6/6; 5YR 5/6; or 2.5YR 4/4. It has moist color of 7.5 YR $4 / 3,4 / 6$, or $5 / 6$; 5YR $4 / 6$; or 2.5 YR $3 / 4$ or $4 / 3$. The texture is gravelly clay loam or clay loam. The content of clay is 27 to 35 percent in the control section.

## Squawrock Taxadjunct

The Squawrock taxadjunct consists of moderately deep, well drained soils on mountains. These soils formed in residuum weathered from sandstone. Slope ranges from 15 to 50 percent. The mean annual precipitation is 25 to 45 inches, and the mean annual air temperature is 54 to 59 degrees $F$.

Taxonomic class: Clayey-skeletal, mixed, superactive, thermic Typic Haploxeralfs

## Typical Pedon

Squawrock gravelly loam, in an area of Fouts-Yorkville-Squawrock association, 15 to 50 percent slopes. When described on August 2, 1995, the soil was dry throughout.

A-0 to 2 inches; brown (7.5YR 5/4) gravelly loam, brown (7.5YR 4/4) moist; weak fine subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; few very fine roots; common very fine interstitial pores; 15 percent gravel; slightly acid ( pH 6.5 ); clear smooth boundary.
Bt1-2 to 9 inches; brown (7.5YR 5/4) very gravelly clay loam, brown (7.5YR 4/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; common fine interstitial pores; few thin clay films bridging sand grains; 35 percent gravel; neutral (pH 6.7); clear smooth boundary.
Bt2-9 to 18 inches; brown (7.5YR 4/4) very gravelly clay loam, dark brown (7.5YR 3/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; common fine interstitial pores; many thin clay films on faces of peds; 35 percent gravel; neutral (pH 6.7); clear smooth boundary.
Bt3-18 to 23 inches; brown (7.5YR 5/2) gravelly clay, brown (7.5YR 4/2) moist; moderate medium subangular blocky structure; hard, friable, sticky and plastic; few very fine roots; few fine and very fine tubular and interstitial pores; many thin clay films on faces of peds; 15 percent gravel; neutral ( pH 7.2 ); clear smooth boundary.
C-23 to 26 inches; weak red (2.5YR 5/2) gravelly clay, dusky red (2.5YR 3/2) moist; massive; hard, friable, sticky and plastic; few fine interstitial pores;

25 percent gravel; neutral (pH 7.2); clear smooth boundary.
R-26 inches; hard, very fine grained sandstone.
Type location: Colusa County, California; about $1 / 4$ mile west of Fouts Springs, California, in Moon Glade; 1,000 feet north and 600 feet east of the southwest corner of section 5, T. 17 N., R. 7 W., MDB\&M; 39 degrees, 21 minutes, 20 seconds north latitude and 122 degrees, 40 minutes, 10 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to lithic contact range from 20 to 40 inches. The mean annual soil temperature is 58 to 61 degrees $F$. The soil moisture control section, from a depth of 10 to 29 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of 10YR $6 / 4,6 / 3,6 / 2$, $5 / 4$, or $5 / 2$ or 7.5 YR $5 / 4$ and moist color of $10 \mathrm{YR} 3 / 3$ or $3 / 2$ or $7.5 Y R 3 / 4$ or $4 / 4$. The texture is loam. The content of gravel and cobbles is 10 to 35 percent. The content of clay is 18 to 27 percent. The content of organic matter is 1 to 3 percent. Reaction is moderately acid to neutral.

The Bt horizon has dry color of 10YR 7/4, 7/2, 6/2, or $5 / 4$ or $7.5 \mathrm{YR} 5 / 4,5 / 2$, or $4 / 4$ and moist color of 10 YR $5 / 4,4 / 3,3 / 4$, or $3 / 3$ or 7.5 YR $4 / 4,4 / 2$, or $3 / 4$. The texture is very gravelly clay loam or gravelly clay. The content of rock fragments averages 35 to 60 percent. In some horizons it is less than 35 percent. The content of clay is 30 to 45 percent. Reaction is slightly acid to slightly alkaline.

The C horizon, if it occurs, has dry color of 2.5 YR $5 / 2$ and moist color of $2.5 \mathrm{YR} 3 / 2$. The texture is gravelly clay.

The Squawrock soils in this survey area are a taxadjunct to the Squawrock series because of the clay in the Bt horizon and colors in the surface layer that are slightly brighter than is typical for the series.

## Stonyford Series

The Stonyford series consists of shallow, well drained soils on mountain side slopes. These soils formed in residuum weathered from basic igneous rocks and related tuff breccia. Slope ranges from 5 to 50 percent. The mean annual precipitation is 22 to 28 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

Taxonomic class: Loamy, mixed, superactive, thermic Lithic Mollic Haploxeralfs

## Typical Pedon

Stonyford gravelly loam, in an area of StonyfordGuenoc complex, 15 to 30 percent slopes, chaparral. When described on July 26, 1978, the soil was dry throughout.
A-0 to 3 inches; brown (7.5YR 4/4) gravelly loam, dark reddish brown (5YR 3/4) moist; weak medium subangular blocky structure parting to moderate medium granular; soft, friable, nonsticky and nonplastic; many fine roots; many fine and very fine interstitial pores; 20 percent angular gravel, dominantly less than $1 / 2$ inch in diameter; neutral ( pH 6.8 ); clear wavy boundary.
Bt1-3 to 7 inches; dark reddish brown (5YR 3/4) gravelly clay loam, dark reddish brown (5YR 3/4) moist; weak medium and coarse subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; many fine roots; many fine and few medium interstitial and tubular pores; few thin clay films lining pores; 15 percent angular gravel; neutral (pH 6.6); clear wavy boundary.
Bt2-7 to 14 inches; dark reddish brown (5YR 3/4) gravelly clay loam, dark reddish brown (5YR 3/3) moist; medium and coarse subangular blocky structure; hard, firm, slightly sticky and slightly plastic; many medium and few fine roots; common thin clay films lining pores and on faces of peds; 30 percent gravel; neutral (pH 6.6); clear irregular boundary.
R-14 inches; highly fractured, partially weathered, brown (7.5YR 5/4) metamorphosed basalt; some soil material in cracks in the upper part, the cracks becoming less numerous and the basalt becoming less weathered and more massive with increasing depth.

## Type location: Colusa County, California;

 approximately 3.7 miles west of Stonyford; about 50 feet north of Fouts Springs Road, on a southwest-facing slope; about 2,200 feet north and 1,200 feet east of the southwest corner of section 35, T. 18 N., R. 7 W., MDB\&M; about 39 degrees, 22 minutes, 13 seconds north latitude and 122 degrees, 36 minutes, 13 seconds west longitude; Gilmore Peak topographic quadrangle.
## Range in Characteristics

The thickness of the solum and the depth to bedrock range from 10 to 20 inches. The mean annual soil temperature is 59 to 64 degrees $F$. The soil moisture control section, from a depth of 6 to 11 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year. The
soils are gravelly throughout. They are moderately acid to neutral throughout.

The A horizon has dry color of $7.5 \mathrm{YR} 4 / 4$ or $5 / 6$; 5 YR $4 / 4$ or $4 / 6$; or 2.5 YR $4 / 4$ or $5 / 4$. It has moist color of $5 \mathrm{YR} 3 / 4$ or $2.5 \mathrm{YR} 3 / 4$. The texture is gravelly loam.

The Bt horizon has dry color of 7.5YR $5 / 4 ; 5 \mathrm{YR} 3 / 4$, $3 / 3,4 / 6$, or $6 / 6$; or 2.5 YR $4 / 6,4 / 4,3 / 4$, or $5 / 4$. It has moist color of 7.5 YR $4 / 4 ; 5$ YR $3 / 4,3 / 3$, or $4 / 6$; or $2.5 \mathrm{YR} 3 / 6$ or $3 / 4$. The increase in clay content from the A horizon to the Bt horizon is less than 10 percent (absolute). The texture is gravelly clay loam. The content of clay is 27 to 35 percent.

## Tujunga Series

The Tujunga series consists of very deep, somewhat excessively drained soils on flood plains. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.
Taxonomic class:Mixed, thermic Typic Xeropsamments

## Typical Pedon

Tujunga loam, overwash, 0 to 2 percent slopes, under annual grasses and forbs. When described on August 4, 1988, the soil was dry throughout.

Ap-0 to 10 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; massive; slightly hard, friable, very sticky and slightly plastic; common very fine roots; common very fine and fine interstitial and tubular pores; few fine distinct brownish yellow (10YR 6/6) accumulations of iron, few fine distinct dark yellowish brown (10YR 3/6) moist; slightly acid ( pH 6.3 ); abrupt wavy boundary.
C1-10 to 17 inches; gray (10YR 5/1) fine sand, very dark gray (10YR 3/1) moist; single grain; loose, nonsticky and nonplastic; many very fine roots; many coarse interstitial pores; neutral (pH 7.2); clear smooth boundary.
C2-17 to 37 inches; gray (10YR 5/1) fine sand, very dark gray (10YR 3/1) moist; single grain; loose, nonsticky and nonplastic; common very fine roots; many coarse interstitial pores; neutral (pH 7.2); diffuse wavy boundary.
C3-37 to 62 inches; gray (10YR 5/1) fine sand, very dark gray (10YR 3/1) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; many coarse interstitial pores; neutral ( pH 7.0 ).

Type location: Colusa County, California; about $3^{1 ⁄ 2} 2$ miles north of Colusa, in an unsectionalized area;

1,350 feet south and 1,950 feet west of the northeast corner of section 5, T. 16 N., R. 1 W., MDB\&M; 39 degrees, 16 minutes, 17 seconds north latitude and 122 degrees, 00 minutes, 36 seconds west longitude; USGS Moulton Weir, California, topographic quadrangle.

## Range in Characteristics

The Ap overwash ranges from 2 to 10 inches in thickness. The mean annual soil temperature is 63 to 65 degrees $F$. The 6 - to 33 -inch soil moisture control section is dry in all parts from May 15 to October 31 and moist in some or all parts from November 15 to May 1.

The Ap horizon has dry color of $10 \mathrm{YR} 6 / 3$ or $5 / 3$ and moist color of $10 \mathrm{YR} 4 / 3$ or $3 / 3$. The texture is loam. Reaction is slightly acid or neutral.

The C horizon has dry color of $10 \mathrm{YR} 5 / 1,6 / 2$, or $5 / 3$ and moist color of $10 Y R 3 / 1,4 / 3$, or $4 / 2$. The texture is fine sand or loamy sand. Reaction is neutral.

## Venado Series

The Venado series consists of very deep, poorly drained soils in basins (figure 20). These soils formed in alluvium weathered from dominantly serpentinitic rocks. Slope ranges from 0 to 2 percent. The mean annual precipitation is 18 to 20 inches, and the mean annual air temperature is 58 to 60 degrees $F$.

## Taxonomic class: Very-fine, magnesic, thermic Aridic Endoaquerts

## Typical Pedon

Venado silty clay, in an area of rangeland. When described on August 8, 1996, the soil was dry throughout.

Ap-0 to 3 inches; very dark gray ( $2.5 \mathrm{Y} 3 / 1$ ) clay, black (2.5Y 2.5/1) moist; strong fine angular blocky structure; very hard, firm, moderately sticky and very plastic; common very fine roots; neutral ( pH 7.2); abrupt wavy boundary.

A-3 to 13 inches; very dark gray ( $2.5 \mathrm{Y} 3 / 1$ ) clay, black (2.5Y $2.5 / 1$ ) moist; weak very coarse prismatic structure parting to moderate very coarse angular blocky; very hard, firm, moderately sticky and very plastic; common very fine roots; very slightly effervescent; pressure faces on vertical and horizontal surfaces of peds; slightly alkaline ( pH 7.8 ); gradual smooth boundary.
Bss-13 to 30 inches; black ( $2.5 \mathrm{Y} 2.5 / 1$ ) clay, black (2.5Y $2.5 / 1$ ) moist; strong medium angular blocky structure parting to weak moderate wedge-shaped aggregates; very hard, firm, moderately sticky and
very plastic; few very fine roots; very slightly effervescent; many intersecting slickensides; 5 percent chert gravel; moderately alkaline ( pH 8.0 ); clear smooth boundary.
Bk-30 to 38 inches; gray ( $5 \mathrm{Y} 6 / 1$ ) silty clay, very dark gray ( $5 \mathrm{Y} 3 / 1$ ) and olive gray ( $5 \mathrm{Y} 4 / 2$ ) moist; weak medium angular blocky structure; hard, friable, moderately sticky and moderately plastic; few fine tubular pores; few faint patchy clay films on vertical and horizontal faces of peds; strongly effervescent; strongly alkaline ( pH 8.6 ); gradual smooth boundary.
Btk-38 to 53 inches; light olive gray ( $5 \mathrm{Y} 6 / 2$ ) and pale yellow ( $5 \mathrm{Y} 8 / 2$ ) silty clay loam, olive gray ( $5 \mathrm{Y} 4 / 2$ ) and light olive gray ( $5 \mathrm{Y} 6 / 2$ ) moist; weak fine angular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine and common fine tubular pores; violently effervescent; few faint patchy clay films on vertical and horizontal faces of peds; strongly alkaline ( pH 8.5 ); abrupt smooth boundary.
BCtk-53 to 61 inches; light olive gray ( $5 \mathrm{Y} 6 / 2$ ) silty clay loam, dark olive gray ( $5 \mathrm{Y} 3 / 2$ ) moist; weak medium angular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine and common fine tubular pores; strongly effervescent; few faint patchy clay films on vertical and horizontal faces of peds; strongly alkaline $(\mathrm{pH}$ 8.5); abrupt smooth boundary.

Ab-61 to 69 inches; very dark gray ( $2.5 \mathrm{Y} 3 / 1$ ) clay, black (2.5Y 2.5/1) moist; strong fine angular blocky structure; very hard, firm, moderately sticky and very plastic; very slightly effervescent; pressure faces on vertical and horizontal surfaces of peds; moderately alkaline ( pH 8.0 ).
Type location: Colusa County, California; about $3^{1 ⁄ 2} 2$ miles southwest of Leesville, California; 1,100 feet west and 200 feet north of the southeast corner of section 17, T. 15 N., R. 5 W., MDB\&M; 39 degrees, 08 minutes, 29 seconds north latitude and 122 degrees, 25 minutes, 53 seconds west longitude; USGS Leesville, California, topographic quadrangle.

## Range in Characteristics

The soils have cracks, 1 to 2 centimeters wide, that open and close at least once each year and remain open for 180 days or more. The cracks extend to a depth of 50 centimeters. The mean annual soil temperature is 58 to 60 degrees $F$. The content of rock fragments ranges from 0 to 15 percent. Ca to Mg ratios are $1: 5$ to $1: 11$. The 6 - to 20 -inch soil moisture control section is dry in all parts from June 1 to October 31 and moist in all parts from November 1 to

May 31. The weighted average clay content in the 10to 40 -inch textural control section is 60 to 65 percent.

The Ap and A horizons have dry color of 10YR 4/1 or $3 / 1$ or $2.5 \mathrm{Y} 3 / 1$ and moist color of $10 \mathrm{YR} 2 / 1$ or 2.5 Y $2.5 / 1$. The texture is clay. The content of clay ranges from 35 to 65 percent. Reaction is neutral or slightly alkaline.

The Bss and Bk horizons have dry color of 10YR $5 / 1$ or $3 / 1$ or $2.5 \mathrm{Y} 6 / 1$ or $2.5 / 1$ and moist color of 10YR $3 / 1$ or $2 / 1$ or $2.5 \mathrm{Y} 4 / 2,3 / 1$, or $2.5 / 1$. The texture is silty clay or clay loam. The content of clay ranges from 35 to 65 percent. Reaction is moderately alkaline or strongly alkaline.

The Btk and BCtk horizons have dry color of 10YR $5 / 2,5 \mathrm{Y} 8 / 2$ or $6 / 2$, or $2.5 \mathrm{Y} 6 / 2$ or $6 / 1$ and moist color of $10 Y R ~ 3 / 2 ; 5 \mathrm{Y} 6 / 2,4 / 2$, or $3 / 2$; or $2.5 \mathrm{Y} 4 / 2$ or $4 / 1$. The texture is clay loam, loam, silty clay loam, silty clay, or clay. The content of clay ranges from 25 to 40 percent. Reaction is strongly alkaline.

The Ab horizon has dry color of $5 \mathrm{Y} 3 / 1$ and moist color of $5 \mathrm{Y} 2.5 / 1$. The texture is clay. The content of clay ranges from 40 to 80 percent. Reaction is moderately alkaline.

## Vina Series

The Vina series consists of very deep, well drained soils on flood plains. These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.
Taxonomic class: Coarse-loamy, mixed, superactive, thermic Pachic Haploxerolls

## Typical Pedon

Vina loam, 0 to 2 percent slopes, in an area of cropland. When described on August 4, 1988, the soil was moist throughout.

Ap-0 to 8 inches; grayish brown (10YR 5/2) loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
A1-8 to 14 inches; brown (10YR 5/3) loam, dark brown (10YR $3 / 3$ ) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and common very fine roots; common very fine interstitial pores; slightly acid (pH 6.4); clear smooth boundary.
A2-14 to 21 inches; brown (10YR 5/3) loam, dark
brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine interstitial and few fine tubular pores; slightly acid (pH 6.5); abrupt smooth boundary.
A3-21 to 26 inches; brown (10YR $5 / 3$ ) fine sandy loam, dark brown (10YR $3 / 3$ ) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; few very fine roots; common very fine interstitial and few fine tubular pores; slightly acid (pH 6.5); abrupt smooth boundary.
AC-26 to 46 inches; brown (10YR 5/3) loam, dark brown (10YR $3 / 3$ ) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and few coarse roots; few very fine interstitial and few fine and common very fine tubular pores; few fine distinct dark brown (7.5YR 3/4) accumulations of iron; slightly acid ( pH 6.5 ); abrupt smooth boundary.
C1-46 to 48 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR $3 / 3$ ) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; few fine distinct grayish brown ( $2.5 \mathrm{Y} 5 / 2$ ) accumulations of iron; neutral ( pH 6.6 ); abrupt smooth boundary.
C2-48 to 60 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR $3 / 3$ ) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular pores; neutral ( pH 6.9 ).
Type Iocation: Colusa County, California; about 5 miles north of Colusa; 1,900 feet east and 300 feet north of the southwest corner of section 31, T. 17 N., R. 1 W., MDB\&M; 39 degrees, 16 minutes, 33 seconds north latitude and 122 degrees, 00 minutes, 54 seconds west longitude; Moulton Weir, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 8 to 24 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15. The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, ranges from 12 to 18 percent.

The Ap and A horizons have dry color of 10YR 5/3 or $5 / 2$ and moist color of $10 Y R 3 / 3$ or $3 / 2$. The texture
is loam or fine sandy loam. Reaction is moderately acid to slightly alkaline.

The AC horizon has dry color of $10 \mathrm{YR} 5 / 3$ or $5 / 2$ and moist color of $10 \mathrm{YR} 3 / 3$ or $3 / 2$. The texture is loam, fine sandy loam, or silt loam. Reaction is slightly acid to slightly alkaline.

The $C$ horizon has dry color of $10 Y R 6 / 3,6 / 2,5 / 3$, or $5 / 2$ and moist color of 10 YR $4 / 4,4 / 3,4 / 2,3 / 4,3 / 3$, or $3 / 2$. The texture is sandy loam or silt loam. Reaction is neutral or slightly alkaline.

## Westfan Series

The Westfan series consists of very deep, well drained soils on relict alluvial fans (figure 21). These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.

Taxonomic class: Fine-loamy, mixed, superactive, thermic Pachic Haploxerolls

## Typical Pedon

Westfan loam, 0 to 2 percent slopes, in an area of cropland. When described on October 25, 1988, the soil was moist below a depth of 18 inches.

Ap1-0 to 4 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine and fine interstitial pores; neutral ( pH 6.9 ); abrupt smooth boundary.
Ap2—4 to 14 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine and fine tubular pores; neutral (pH 7.3); clear smooth boundary.
ABt-14 to 24 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak coarse prismatic structure parting to moderate fine angular blocky; hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine tubular pores; continuous moderately thick clay films lining pores and on faces of peds; slightly alkaline (pH 7.5); clear smooth boundary.

Btk-24 to 33 inches; brown (10YR 4/3) fine sandy loam, dark brown (10YR 3/3) moist; strong medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular and few very fine interstitial pores; common moderately thick clay films on faces of peds and lining pores;
strongly effervescent; disseminated lime in seams; slightly alkaline ( pH 7.7 ); clear smooth boundary.
Ck1—33 to 42 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular and interstitial pores; moderately alkaline ( pH 7.9 ); strongly effervescent; disseminated lime in seams and concretions; clear smooth boundary.
Ck2—42 to 55 inches; brown (10YR 5/3) fine sandy loam, brown (10YR 4/3) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine interstitial pores; strongly effervescent; disseminated lime in seams and nodules; moderately alkaline ( pH 7.9 ); gradual smooth boundary.
C1—55 to 69 inches; light yellowish brown (10YR 6/4) fine sandy loam, mixed dark brown (10YR 3/3) and brown (10YR 4/3) moist; massive; hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine interstitial pores; moderately alkaline ( pH 8.0 ); gradual wavy boundary.
C2—69 to 92 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; massive; very hard, very friable, sticky and plastic; few very fine interstitial pores; moderately alkaline ( pH 8.2 ); gradual smooth boundary.
2C-92 to 100 inches; light yellowish brown (10YR 6/4) silty clay loam, yellowish brown (10YR 5/4) moist; massive; very hard, firm, very sticky and very plastic; few very fine interstitial pores; moderately alkaline ( pH 8.3 ).
Type location: Colusa County, California; about 1 mile east of Williams; 3,200 feet west and 720 feet south of the northeast corner of section 19, T. 15 N., R. 2 W., MDB\&M; 39 degrees, 08 minutes, 45 seconds north latitude and 122 degrees, 07 minutes, 35 seconds west longitude; USGS Williams, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum ranges from 25 to more than 60 inches. The mean annual soil temperature is 63 to 65 degrees $F$, and the soil temperature is above 47 degrees $F$ the entire year. The 6- to 17-inch soil moisture control section is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 31. The soils are calcareous at a depth of 20 to 40 inches. The 10- to 40-inch textural control section averages 18 to 27 percent clay. Some pedons are strongly alkaline throughout.

The Ap horizon has dry color of 10 YR $5 / 3,5 / 2,4 / 3$,
or $4 / 2$ and moist color of $10 \mathrm{YR} 3 / 3$ or $3 / 2$. The texture is clay loam, loam, or gravelly loam. Reaction is neutral or slightly alkaline.

The ABt horizon has dry color of $10 \mathrm{YR} 5 / 3$ or $4 / 3$ and moist color of 10 YR $4 / 3$ or $3 / 3$. The texture is sandy clay loam, loam, or gravelly loam. Reaction is neutral to moderately alkaline.

The Btk horizon has dry color of $10 \mathrm{YR} 5 / 4,5 / 3$, or $4 / 3$ and moist color of $10 Y \mathrm{YR} 4 / 4,4 / 3$, or $3 / 3$. The texture is sandy clay loam, loam, fine sandy loam, or gravelly loam. Reaction is neutral to moderately alkaline.

The C and 2C horizons have dry color of $10 \mathrm{YR} 6 / 4$, $5 / 4$, or $5 / 3$ and moist color of $10 Y R 3 / 3,3 / 4,4 / 4,4 / 3$, or $5 / 4$. The texture is silty clay loam, loam, sandy clay loam, or fine sandy loam. Reaction is slightly alkaline or moderately alkaline.

## Willows Series

The Willows series consists of very deep, poorly drained soils in basins (figure 22). These soils formed in alluvium derived from mixed sources. Slope ranges from 0 to 2 percent. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 60 to 62 degrees $F$.
Taxonomic class: Fine, smectitic, thermic Sodic Endoaquerts

## Typical Pedon

Willows silty clay, 0 to 1 percent slopes, frequently flooded, in a fallow rice paddy; described on September 24, 1993.
Ap1-0 to 5 inches; dark grayish brown ( $2.5 \mathrm{Y} 4 / 2$ ) silty clay, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; weak medium subangular blocky structure parting to moderate medium coarse granular; very hard, firm, sticky and plastic; many very fine roots; many very fine and fine low-continuity interstitial and tubular pores; noneffervescent; common fine distinct yellowish brown (10YR 5/4) cylindrical accumulations of iron; neutral ( pH 7.0 ); clear smooth boundary.
Ap2-5 to 13 inches; dark grayish brown ( $2.5 \mathrm{Y} 4 / 2$ ) silty clay, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; weak coarse angular blocky structure; very hard, firm, sticky and plastic; common very fine roots; many very fine low-continuity tubular pores; prisms 25 to 35 centimeters across; compacted layer; few prominent discontinuous pressure faces on peds; noneffervescent; common fine distinct
yellowish brown (10YR 5/4) accumulations of iron; moderately alkaline ( pH 7.9 ); gradual smooth boundary.
Bw-13 to 20 inches; grayish brown (2.5Y 5/2) silty clay, very dark grayish brown ( $2.5 \mathrm{Y} 3 / 2$ ) moist; moderate coarse angular blocky structure; very hard, firm, sticky and plastic; few very fine roots; many very fine low-continuity tubular pores; prisms 25 to 35 centimeters across; compacted layer; few prominent discontinuous pressure faces on peds; slightly effervescent on concretions; common fine irregular very dark gray (10YR 3/1) slightly hard iron-manganese concretions; few fine distinct yellowish brown (10YR 5/4) accumulations of iron; moderately alkaline ( pH 8.1 ); gradual smooth boundary.
Bssy1-20 to 39 inches; brown (10YR 5/3) silty clay, brown (10YR 4/3) moist; strong coarse angular blocky structure; very hard, firm, sticky and plastic; few very fine roots; many very fine low-continuity tubular pores; prisms 25 to 35 centimeters across, breaking to wedge-shaped peds; few prominent discontinuous pressure faces on peds, few prominent patchy organic coatings in root channels and/or pores, and common prominent continuous intersecting slickensides on faces of peds; common fine irregular white (10YR 8/1) soft masses of lime; common white (10YR
8/1) fine threads and soft masses of gypsum; common fine rounded very dark gray (10YR 3/1) slightly hard iron-manganese concretions; slightly alkaline ( pH 7.8 ); clear smooth boundary.
Bssy2-39 to 54 inches; brown (10YR $5 / 3$ ) silty clay, brown (10YR 4/3) moist; strong coarse angular blocky structure; very hard, firm, sticky and plastic; few very fine roots; many very fine low-continuity tubular pores; prisms breaking to wedge-shaped peds; common prominent continuous intersecting slickensides on faces of peds; few prominent patchy organic coatings in root channels and/or pores; common fine irregular white (10YR 8/1) soft masses of lime; common white (10YR 8/1) fine threads and soft masses of gypsum; common fine rounded very dark gray (10YR $3 / 1$ ) slightly hard iron-manganese concretions; strongly effervescent on concretions; moderately alkaline ( pH 7.9 ); clear smooth boundary.
Bssy3-54 to 60 inches; brown (10YR $5 / 3$ ) silty clay, brown (10YR 4/3) moist; moderate coarse angular blocky structure; very hard, firm, sticky and plastic; few very fine roots; many very fine low-continuity tubular pores; prisms breaking to wedge-shaped
peds; iron accumulations along pore linings or on surfaces of slickensides; common prominent continuous intersecting slickensides on faces of peds; common fine irregular white (10YR 8/1) soft masses of lime; common white (10YR 8/1) fine threads and soft masses of gypsum; common coarse and very coarse irregular soft masses of lime; common fine rounded iron-manganese concretions; strongly effervescent on concretions; few medium distinct light brownish gray (10YR 6/ 2) accumulations of iron; moderately alkaline ( pH 8.0); gradual smooth boundary.

Bssy4-60 to 72 inches; brown (10YR 5/3) clay, brown (10YR 4/3) moist; common medium distinct gray (10YR 5/1) (moist) irregular iron depletions; moderate coarse angular blocky structure parting to moderate medium subangular blocky; very hard, firm, deformable, sticky and plastic; few very fine roots throughout; many very fine lowcontinuity tubular pores; prisms breaking to wedge-shaped peds; iron depletions along pore linings or on surfaces of slickensides; common prominent continuous intersecting slickensides on faces of peds; common fine irregular white (10YR 8/1) soft masses of lime throughout; common white (10YR 8/1) fine threads and soft masses of gypsum throughout; common fine rounded slightly hard iron-manganese concretions throughout; strongly effervescent on concretions ( $\mathrm{HCl}, 1$ normal); moderately alkaline (pH 8.2); clear wavy boundary.
Bssy5-72 to 80 inches; yellowish brown (10YR 5/4) silty clay, dark yellowish brown (10YR 4/4) moist; common medium gray (10YR 5/1) (moist) irregular iron depletions; moderate coarse subangular blocky structure; very hard, firm, deformable, sticky and plastic; few very fine roots throughout; many very fine low-continuity tubular pores; prisms breaking to wedge-shaped peds; iron depletions along pore linings or on surfaces of slickensides; common prominent continuous intersecting slickensides on faces of peds; common fine irregular white (10YR 8/1) soft masses of lime throughout; common white (10YR 8/1) fine threads and soft masses of gypsum throughout; common fine rounded very dark gray (10YR 3/1) slightly hard iron-manganese concretions throughout; strongly effervescent on concretions ( $\mathrm{HCl}, 1$ normal); moderately alkaline ( pH 8.1 ); clear smooth boundary.
Bssky-80 to 87 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; few fine greenish gray (5GY 5/1) (moist)
irregular iron depletions; moderate coarse subangular blocky structure; very hard, firm, deformable, sticky and plastic; few very fine roots throughout; few fine tubular pores; prisms breaking to wedge-shaped peds; iron depletions along pore linings or on surfaces of slickensides; common prominent continuous intersecting slickensides on faces of peds; common fine irregular white (10YR 8/1) soft masses of lime throughout; common white (10YR 8/1) fine threads and soft masses of gypsum throughout; common fine rounded very dark gray (10YR 3/1) iron-manganese concretions throughout; violently effervescent on concretions ( $\mathrm{HCl}, 1$ normal); strongly alkaline ( pH 8.7 ).

Type location: Colusa County, California; about 3 miles west of Colusa; 2,200 feet north and 2,250 feet west of the southeast corner of section 27, T. 16 N., R. 2 W., MDB\&M; 39 degrees, 12 minutes, 40 seconds north latitude and 122 degrees, 4 minutes, 55 seconds west longitude; USGS Colusa, California, topographic quadrangle.

## Range in Characteristics

The mean annual soil temperature is 63 to 65 degrees $F$. The soil temperature is above 47 degrees $F$ the entire year. Unless the soils are irrigated, the soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from May 15 to October 31 and moist in some or all parts from November 1 to May 15 . The weighted average clay content in the textural control section, from a depth of 10 to 40 inches, ranges from 40 to 60 percent.

The A horizon has dry color of $10 \mathrm{YR} 6 / 2,6 / 1,5 / 2$, or $5 / 1$ or $2.5 \mathrm{Y} 5 / 2$ or $4 / 2$ and moist color of $10 \mathrm{YR} 3 / 2$ or $3 / 1$ or $2.5 \mathrm{Y} 3 / 2$. The texture is silty clay. Reaction is slightly acid to moderately alkaline.

The Bw, Bssy, and Bssky horizons have dry color of $10 Y R 6 / 4,6 / 3,5 / 4$, or $5 / 3$ or $2.5 \mathrm{Y} 6 / 4$ or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 4,4 / 3,3 / 4$, or $3 / 3$ or $2.5 \mathrm{Y} 4 / 4$, $4 / 2$, or $3 / 2$. The texture is silty clay or clay. Reaction is slightly alkaline to strongly alkaline.

## Yollabolly Series

The Yollabolly series consists of shallow, excessively drained soils on mountain side slopes. These soils formed in residuum derived from schist. Slope ranges from 30 to 75 percent. The mean annual precipitation is 50 to 70 inches, and the mean annual air temperature is 43 to 48 degrees $F$.

Taxonomic class: Loamy-skeletal, mixed, active, acid, frigid Lithic Xerorthents

## Typical Pedon

Yollabolly very gravelly loam, in an area of Freezeout-Yollabolly association, 50 to 75 percent slopes, under black oak and Jeffrey pine with a thin surface cover of twigs, oak leaves, and pine needles. When described on October 15, 1996, the soil was dry throughout.
A1-0 to 2 inches; brown (10YR 5/3) very gravelly loam, dark brown (10YR 3/3) moist; moderate medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine interstitial pores; 35 percent gravel; strongly acid (5.5); abrupt smooth boundary.
A2-2 to 6 inches; brown (10YR 5/3) very gravelly loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine interstitial pores; 35 percent gravel; moderately acid (5.9); clear smooth boundary.
C-6 to 17 inches; light yellowish brown (10YR 6/4) very gravelly loam, brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium and few very fine roots; common very fine interstitial pores; 40 percent gravel; strongly acid (5.5); abrupt smooth boundary.
R-17 inches; hard, fractured schist.
Type Iocation: Colusa County, California; on Mendocino National Forest Road 17N14, about 0.3 mile north of its intersection with MNF Road 16NO3; 1,500 feet west and 400 feet south of the northeast corner of section 2, T. 16 N., R. 8 W., MDB\&M; 39 degrees, 16 minutes, 29 seconds north latitude and 122 degrees, 43 minutes, 30 seconds west longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The depth to lithic contact ranges from 10 to 20 inches. The content of clay ranges from 10 to 25 percent throughout the profile. The mean annual soil temperature is 44 to 47 degrees $F$. The soil temperature is above 41 degrees $F$ from March 15 to November 15 and above 47 degrees F April 15 to October 15. The soil moisture control section, from a depth of 6 to 17 inches, is dry in all parts from July 30 to October 1 and moist in all parts December 15 to May 30.

The A horizon has dry color of 10YR 7/2, 6/4, 5/4, or $5 / 3$ or 7.5 YR $6 / 4$ and moist color of $10 Y R 5 / 2,4 / 4$, $3 / 4$, or $3 / 3$ or $7.5 \mathrm{YR} 4 / 6$. The texture is very gravelly or extremely gravelly loam in the lower part. The content of gravel ranges from 35 to 65 percent. Reaction is very strongly acid in most pedons and moderately acid in some pedons.

The $C$ horizon has dry color of $10 Y R 6 / 6,6 / 4,6 / 3$, or $5 / 6$ and moist color of 10 YR $5 / 6,4 / 6,4 / 3$, or $4 / 2$. The texture is very gravelly sandy loam, extremely gravelly sandy loam, very gravelly loam, or extremely gravelly loam. The content of gravel ranges from 35 to 75 percent. Reaction is very strongly to moderately acid.

## Yorkville Series

The Yorkville series consists of very deep, well drained soils on mountain side slopes and landslips. These soils formed in residuum weathered dominantly from schist. Slope ranges from 15 to 50 percent. The mean annual precipitation is 25 to 45 inches, and the mean annual air temperature is 54 to 59 degrees $F$.

Taxonomic class: Fine, mixed, superactive, thermic Typic Argixerolls

## Typical Pedon

Yorkville clay loam, in an area of Fouts-YorkvilleSquawrock association, 15 to 50 percent slopes. When described on August 13, 1980, the soil was dry throughout.

A—0 to 2 inches; dark gray (10YR 4/1) clay loam, black (10YR $2 / 1$ ) moist; strong fine granular structure parting to moderate medium subangular blocky; soft, friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine interstitial pores; 2 percent gravel; neutral (pH 7.2); clear wavy boundary.
Bt1-2 to 15 inches; dark gray (10YR 4/1) clay loam, black (10YR 2/1) moist; moderate medium and coarse subangular blocky structure; very hard, firm, sticky and plastic; common fine roots; common very fine interstitial and few fine tubular pores; 5 percent gravel; slightly alkaline ( pH 7.5 ); gradual wavy boundary.
Bt2—15 to 40 inches; gray (10YR 5/1) clay, very dark gray (10YR 3/1) moist; moderate fine prismatic structure parting to moderate medium subangular blocky; very hard, firm, sticky and plastic; few fine and medium roots; common fine interstitial and
few fine tubular pores; 5 percent gravel; slightly alkaline ( pH 7.6 ); gradual wavy boundary.
Bt3-40 to 55 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard; friable, sticky and plastic; few fine roots; common fine interstitial pores; 10 percent gravel; slightly alkaline (pH 7.6); gradual wavy boundary.
$\mathrm{BC}-55$ to 60 inches; grayish brown (10YR $5 / 2$ ) clay loam, dark grayish brown (10YR 4/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; common fine interstitial pores; 10 percent gravel; moderately alkaline ( pH 8.0); clear wavy boundary.
$\mathrm{Cr}-60$ inches; strongly weathered and highly fractured schist.

Type location: Colusa County, California; about $1 / 1 / 2$ miles northeast of Fouts Springs, California; 1,600 feet west and 2,000 feet north of the southeast corner of section 32, T. 18 N., R. 7 W., MDB\&M; 39 degrees, 22 minutes, 10 seconds north latitude and 122 degrees, 39 minutes, 35 seconds west
longitude; USGS Fouts Springs, California, topographic quadrangle.

## Range in Characteristics

The thickness of the solum and the depth to bedrock are more than 60 inches. The mean annual soil temperature is 58 to 61 degrees $F$. The soil moisture control section, from a depth of 6 to 20 inches, is dry in all parts from June 1 to October 31 and moist in some or all parts the rest of the year.

The A horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2,4 / 3$, $4 / 2$, or $4 / 1$ or $2.5 \mathrm{Y} 5 / 2$ or $4 / 2$ and moist color of 10 YR $3 / 3,3 / 2,3 / 1$, or $2 / 1$ or $2.5 \mathrm{Y} 3 / 2$. The texture is clay loam. Reaction is slightly acid to slightly alkaline.

The Bt horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2,5 / 1$, $4 / 3,4 / 2$, or $4 / 1$ or $2.5 \mathrm{Y} 5 / 4$ or $5 / 2$ and moist color of 10YR $4 / 1,3 / 2,3 / 1$, or $2 / 1$ or $2.5 \mathrm{Y} 3 / 2$. This horizon is clay loam or clay and has 35 to 50 percent clay, 9 to 20 percent more clay than the A horizon. Reaction is neutral to moderately alkaline.

The BC horizon has dry color of $10 \mathrm{YR} 5 / 3,5 / 2,4 / 3$, or $4 / 2$ or $2.5 \mathrm{Y} 5 / 4$ or $5 / 2$ and moist color of $10 \mathrm{YR} 4 / 2$ or $3 / 2$ or $2.5 \mathrm{Y} 3 / 2$. The texture is clay loam. The content of clay is 27 to 35 percent. Reaction is neutral to moderately alkaline.

## Formation of the Soils

Soil formation is complex, involving chemical, physical, and biological processes working together upon the uppermost layers of the earth's surface. The diversity of soils depends on the magnitude and interaction of five major soil-forming factors-climate, topography, parent material, vegetation and other living organisms, and time (Jenny, 1994).

## Climate

Climate exerts a powerful influence on soil formation. The availability of moisture is of critical importance in the functioning of chemical and physical processes. Weathering of parent material proceeds at a rapid rate in areas where a continual supply of moisture is available. In arid climates soil formation may come to a relative halt during extremely dry periods.

The soils in the Sacramento Valley formed under a climate that supplied abundant moisture for soil formation in winter and early spring and then remained dry for the rest of the year. Areas along the Sacramento River and other streams received additional moisture from overbank flooding, amounting to two or three times the amount from rainfall. As a result of a combination of overbank flooding and deposition, areas along the Sacramento River and other streams on the west side of the Sacramento Valley have developed very deep soils.

The dry summer and fall in the Sacramento Valley reduce the amount of soil leaching caused by rainfall. The reduced leaching enhances the retention of bases on the soil exchange complex. The rich level of bases combined with soil texture, depth, and content of organic matter have resulted in the extremely fertile soils of the Sacramento Valley.

In the foothills of the county and the lower elevation areas of the Coast Range, rainfall is below a level that leaches many bases from the soils, but it is adequate in most years for plant growth; consequently, the soils are productive areas for livestock grazing. Moisture plays a critical role in weathering the fine grained sandstone and shale of the Great Valley Formation that underlies most of the foothills. Millsholm soils,
which are shallow over bedrock, are primarily on south-facing slopes. Solar radiation dries these soils by early in spring, stopping most chemical soil weathering. Contra Costa soils are mostly on shaded north-facing slopes that retain moisture well into the summer months, resulting in soil profile development to a depth of 30 to 35 inches.

Above elevations of approximately 3,000 feet on the Coast Range, the amount of annual rainfall increases from 35 to 55 inches, depending on the specific elevation. Rainfall in the mountains is sufficient to leach bases from the soil exchange complex and produce acid soils. With the exception of the very deep Bamtush soils, which are in stable areas, soils of the mountains seldom reach a depth of more than 30 inches. On the steep slopes, the significant rainfall causes erosion, which limits the development of deep soils.

Soil temperature plays an important role in soil formation bacause chemical reactions proceed more rapidly with increasing soil temperature. Soil chemical reactions essentially stop when soil temperatures are below 32 degrees $F$, contributing to the limited depth of the soils in the higher areas on the Coast Range. Soil temperature and moisture are interrelated. As the soils dry during the summer, little chemical weathering of parent materials proceeds, even at the higher temperatures.

Soils of the foothills and Sacramento Valley have soil temperatures high enough during the moist periods of winter and early spring for some chemical weathering to continue.

Soil temperature assists in the weathering of parent materials into clays. The soils of the foothills and stable areas of the Sacramento Valley are relatively high in content of clay. Areas along the Sacramento River and west-side streams have deposits of loamy material, which is transported alluvium and has not developed in place. Mountain soils are generally loamy because their lower soil temperatures reduce the weathering of parent material to clay. Increasing soil moisture and decreasing soil temperature contribute to a higher content of organic matter in the soils of the mountains.

A few of the soils in Colusa County formed under different, older climatic conditions known as paleoclimates. Corning soils are the best example. They were deposited during a period when the amount of annaul rainfall was considerably higher. Bases in these soils are considerably leached, partly because of the higher rainfall during the paleoclimate and partly because of the great age of the soils. The clay in these soils has been translocated into a thick, dense claypan, which, combined with a low base status, results in low fertility.

## Topography

Topography plays a role in soil formation in the uplands. The steeper slopes generally have shallower soils. Erosion of soil profiles occurs in small amounts under normal conditions and may be rapidly accelerated following the loss of a plant cover or another disturbance. Soil materials eroded from the upper slopes are deposited on the lower toe slopes and in valleys at the base of the hills and mountains.

In the Sacramento Valley, the lowest geographical areas are the basins. Alcapay, Capay, Clear Lake, Corbiere, and Willows soils are in the basins. These soils are now partially drained by ditches, but during their formation, they all had a high water table at some time of the year. The water in the soils contained large amounts of soluble salts, which were deposited in the upper part of the soils through the process of evapotranspiration. The resulting soils, which have an accumulation of salts, have required extensive reclamation to remove the excess salts in irrigation water or displace them below the root zone.

Alluvium, which is deposited along streams, is the parent material of soils that developed in response to the relief of the flood plain and the elevation of the streams. This development is described in more detail in the section on geomorphic surfaces.

Mass movement is a process in which soil material is removed from side slopes and deposited in downslope areas. Many areas of the mountains and foothills are susceptible to mass movement, which can be caused by steep slopes, geologic uplift, unstable underlying geologic material, periods of excessive rainfall, removal of the plant cover, and road construction.

## Parent Material

Parent material exerts a strong influence on soil formation. It is the unconsolidated, more-or-less chemically weathered mineral or organic matter in
which the soils are developed by pedogenic processes. Along the Sacramento River and west-side streams, soils formed in alluvium deposited during periods of flooding. The properties of the alluvium affect texture, fertility, pH , salt content, color, and other soil properties. Tujunga and Vina soils formed in coarse textured alluvium and are high in sand content and low in clay content. Corbiere, Moonbend, and Scribner soils formed in siilty alluvium.

The soils of the Sacramento Valley are weathered to a considerable depth because the native conditions under which the soils formed were characterized by adequate moisture and heavy vegetation. Unaltered parent material of these soils was not observed during the soil survey, except in very deep ditches.

Alcapay, Capay, Clear Lake, and Willows soils formed in very fine textured alluvium in the Colusa Basin and Butte Sink. A water table in these soils assisted soil formation through the deposition of salts. There is always the possibility that the current alluvial soils overlie a paleosol, or older buried soil, as deposition was continual under natural conditions.

Soils on foothills formed in residuum derived from fine grained sandstone and shale, which are readily weathered if moisture is available. Most of these soils have a relatively low content of rock fragments for upland soils as a result of the readily weatherable nature of the parent rock. The fine grained nature of the parent material also results in soils that are generally high in content of clay. Several soils, notably Ayar and Balcom soils, formed in material high in content of carbonates and thus have a high content of these carbonates throughout.

Soils that formed in material derived from serpentinitic rocks, which have magnesium-bearing minerals, generally are higher in content of magnesium than other soils. The magnesium influences plant growth at high levels. Soils along the western boundary of Lake County and west of Bear, Indian, and Stonyford Valleys formed in material weathered from serpentinitic rocks. Examples are Henneke, Okiota, and Montara soils. Excessive magnesium in these soils results in unusual plant communities because the plants typical of the survey area struggle to survive or are eliminated.

Alluvium derived from the soils that are high in content of magnesium has been widely deposited in Bear Valley. Bearvalley, Leesville and Venado soils which have high levels of magnesium, formed in this alluviuim.

The soils on the Coast Range formed mainly in material weathered from schist of the Fransiscan Formation. Because of steep slopes and slow
weathering rates resulting from cold soil temperatures, these soils are moderately deep to unaltered parent material and have many rock fragments.

## Vegetation and Other Living Organisms

Plants, micro-organisms, animals, and other organisms affect certain soil features. In areas of the Sacramento Valley grasslands, which have scattered oaks, the content of organic matter throughout the soil profile decreases regularly with increasing depth. As soils of the Grandbend, Moonbend, Scribner, and Vina series were cultivated, beginning in the late 1800s, a large amount of the organic matter was lost. This loss was accompanied by a loss of fertility. Modern fertilizers now compensate for this loss of native fertility. Soil nitrogen, a nutrient essential for plant growth, also was lost as the soils were cultivated and was replaced by commercial fertilizers. Incorporating plant residue into the soils improves the fertility and tilth of the soils.

Micro-organisms, such as bacteria, are present in large numbers in soils and affect the decomposition of rocks, the transformation of nitrogen compounds for plant use, and many other soil chemical properties. During dry periods irrigation has maintained a relatively constant moisture content in the soils that increases the activity of microbes and promotes weathering of parent material.

Soils used for rice in flooded paddies are subject to extended reducing conditions with changes in soil pH and transformation of iron and manganese. Salts that are present in the natural state of clayey soils are moved downward into the soil profile by irrigation.

Soils on foothills are dominantly affected by the growth of grasses. Organic matter is regularly distributed in these soils. Some accumulation of organic matter occurs below oak trees. This accumulation disappears when the trees are removed or die and the spot reverts to grasses.

In the mountains conifers play a major role in soil formation. Organic matter accumulates in large amounts on the surface in a partly decomposed mat and in the upper part of the A horizon. Plant roots concentrated in this layer capture plant nutrients. The lower parts of the soils contribute little to plant nutrition. Tree roots accelerate rock decomposition by entering cracks and creating small rock fragments. Pine and fir needles decompose, creating organic acids, which lower soil pH. The greater forest plant growth could produce deeper soils; however the steep slopes and colder soil temperatures dominate soil formation in the mountains, resulting in soils of only moderate depth.

## Time

The length of time that the soil-forming factors have been active determines the morphology of the soils. Very young soils, such as Tujunga soils along the Sacramento River, have been deposited in the last hundred years and show little evidence of soil formation other than a small accumulation of organic matter in the upper few inches. Vina soils, which are very young soils on the slightly more stable surfaces, have accumulated an appreciable amount of organic matter throughout. They are several hundred years old.

As more time passes, other soil processes take place, especially the translocation of clay from the A horizon to the $B$ horizon. In the slightly older soils, such as Moonbend and Westfan soils, some clay has been translocated to the $B$ horizon. Soils that are similar to Moonbend soils generally are less than a few thousand years old.

As more time passes, to the point of tens of thousands of years, some soils develop a thick subsoil of heavy clay. Examples are Hillgate and Mallard soils, which have more than 40 percent clay in the $B$ horizon.

After very long periods of time, soils develop to the point where further soil formation may not proceed without a change in the soil-forming factors. These soils may be characterized by a very dense claypan subsoil, a duripan, the leaching of bases, and iron oxidation. The very old Corning soils, for example, have a dense claypan, are low fertility because of the leaching of bases, and have characteristic red subsoil colors because of iron oxidation. Only resistant remnants of the old terraces where the Corning soils formed remain. These soils were deposited during the Pleistocene and are the oldest valley soils in the survey area.

## Geomorphic Surfaces of the Sacramento Valley in the Survey Area

A geomorphic surface is a mappable area of the earth's surface that has a common history; the area is of similar age and is formed by a set of processes during an episode of landscape evolution. A geomorphic surface can be erosional, constructional, or both. The surface shape can be plane, concave, convex, or any combination of these. Understanding geomorphic surfaces is very important to the understanding of soils in valleys and on terraces and is used extensively in soil mapping.

## Low Flood Plains

The area inside the levees on the Sacramento River has beaches of sand and gravel and numerous bars
and channels. This area is heavily vegetated and frequently flooded. The soils under the dense vegetation of oaks, cottonwoods, willows, and grapevines are sandy and stratified.

Inside the Sacramento River levees are areas 5 to 10 feet higher than the beaches and bars. This second surface has coarse-loamy Mollisols of the Vina series that have a very thick, dark surface horizon. The native vegetation was dense stands of oaks, cottonwoods, willows, grapevines, and poison oak. This surface is flooded occasionally and is used for orchards of walnuts and peaches. It continues on both sides of the river in some areas and also follows old slough remnant channels away from the river. The levees are often constructed at the edge of this surface on what was the edge of the natural river levee. The natural river levee is a slightly higher area of deposition from overbank flooding along the river.

## High Flood Plains

This surface is now protected from flooding by the levees along the Sacramento River. Historically, the surface was flooded in most years during periods of high riverflow. It begins at the natural levee and slopes very gently toward the Colusa Basin. The soils are dominantly those of the Moonbend series, which have a high content of silt and a thick, dark surface horizon. These very productive soils are used mostly for orchards and some tomato production. The city of Colusa is constructed on this surface, as was the Native American village of Colus, because of less intense, less frequent flooding. The native vegetation was oak with scattered cottonwoods and dense, tall perennial grasses.

## Basins

This surface makes up most of the Colusa Basin and Butte Sink. The Colusa Basin received regular additions of fine textured sediments because of overflows from sloughs of the Sacramento River and streams flowing east from the Coast Range foothills. The fine textured sediments settled out of the slowmoving water once it entered the basin. Floodwater from the Sacramento River no longer reaches the basin because of levees, but the streams from the Coast Range foothills still reach the basin unimpeded. Flooding is still frequent and of long duration along the lowest areas of the basin. The soils in the basin occur as extensive areas of Willows and Clear Lake soils.

Large areas of the basin surface were affected by the accumulation of sodium and have been partially reclaimed over the last 80 years. Additions of gypsum and other soil amendments and annual flooding for
rice production leached the soil salts down to 3 or 4 feet in most areas. As rice roots extend to a depth of only about 12 inches, the soil reclamation efforts here are adequate for rice and excellent yields are obtained. It appears that the dense clays that extend to a depth of 8 feet or more and the ground water table, which is usually not lower than 6 feet, limit the further reclamation of these soils. Fields that are not planted for several years will have salts transported upwards to the surface through evaporation. As the basin rises to the west, it meets the distal ends of alluvial fans and joins some interfan basins east of Interstate 5.

## Interfan Basins

This surface lies between the alluvial fans on the west side of the Sacramento Valley. The soils are those of the Capay, Alcapay, Willows, and Clear Lake series. They are fine textured, having horizons mostly of clay. This surface is depositional; fine textured sediments were deposited from the streams on the west side of the valley. These basins are used mostly for rice production. The accumulation of sodium was severe in these basins, and reclamation was started in the 1970s, after the Tehama-Colusa canal was built. Many areas are now sufficiently reclaimed to produce good yields of rice, but salty areas remain. Alcapay soils have excess sodium as high as 2 feet in their profile and yet produce good rice yields if managed carefully.

## Alluvial Fans

The alluvial fans generally have two surfaces. The lower surface consists of the immediate stream channels, which are flooded very regularly. This surface has been changed by stream diversion in many areas. The native vegetation was cottonwoods and willows that were mostly cleared but are returning in many areas. The soils are those of the Hustabel series, which have a texture of sandy loam in the upper part, and those of the Arand series, which are sandy. A slightly higher surface that is flooded less frequently makes up most of the area of alluvial fans. The soils on this surface are those of the Westfan and Corval series, which are dominantly loamy. The cities of Williams and Maxwell are on these surfaces. Diversion of streams has reduced the risk of flooding. Flooding outside of stream channels occurs occasionally on the alluvial fan surface.

## Alluvial Terraces

This older surface is limited to terraces on the western margins of the Sacramento Valley and in a
few areas in upland valleys. These terraces are no longer flooded, and erosion is replacing deposition as the means of constructing the surface. The soils are dominantly those of the Hillgate series, which have a subsoil of brownish clay or clay loam. The alluvial terrace surface grades very slowly into the alluvial fan surface and the interfan basin surface, which is difficult to locate in places. In the Arbuckle area, the alluvial terrace surface is overlain in places by a surface of alluvium that was deposited from streams that no longer deposit material on the surface. The soils in this area are those of the Arbuckle series, which generally
are loamy and have gravel in the lower part of the subsoil.

The oldest alluvial terrace surface occurs as scattered erosional remnants on a small acreage along the lower margins of foothills and in some foothill valleys. Erosion is the dominant process on this surface today. The soils are those of the Corning series, which are typically reddish brown or dark reddish brown, are dominantly neutral or slightly acid, and generally have dense clay in the upper part of the subsoil.

## References

American Association of State Highway and Transportation Officials (AASHTO). 2000. Standard specifications for transportation materials and methods of sampling and testing. 20th edition, 2 volumes.

American Society for Testing and Materials (ASTM). 2001. Standard classification of soils for engineering purposes. ASTM Standard D 2487-00.

Green, Will. 1880. History of Colusa County.
Jenny, Hans. 1994. Factors of soil formation: A system of quantitative pedology.
Rogers, Justus. 1891. History of Colusa County.
Storie, R.E. 1933. An index for rating the agricultural value of soils. University of California Agricultural Experiment Station Bulletin 556.

Storie, R.E., and A.E. Weislander. 1948. Timber soil rating. Unpublished.
Storie, R.E. 1976. Storie index rating. University of California, Division of Agricultural Science Special Publication 3203.

United States Department of Agriculture (USDA), Agricultural Research Service (ARS). 1978. Predicting rainfall-erosion losses: A guide to conservation planning. U.S. Department of Agriculture Handbook 537.

United States Department of Agriculture (USDA), Bureau of Soils (BOS). 1909. Soil survey of Colusa area, California.

United States Department of Agriculture (USDA), Bureau of Soils (BOS). 1915.
Reconnaissance soil survey of the Sacramento Valley, California.
United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report 42.

United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 1998. Keys to soil taxonomy. 8th edition. Soil Survey Staff.

United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Soil Survey Staff. U.S. Department of Agriculture Handbook 436.

United States Department of Agriculture (USDA), Soil Conservation Service (SCS). 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture (USDA), Soil Conservation Service (SCS). 1993. Soil survey manual. Soil Survey Staff, U.S. Department of Agriculture Handbook 18.

University of California (UC). 1948. Soil survey of Colusa County.

## Glossary

AASHTO classification. A system that classifies soils specifically for geotechnical engineering purposes that are related to highway and airfield construction. It is based on particle-size distribution and Atterberg limits.
AASHTO group index (GI). An empirical index number used to evaluate clayey and silty clay material.
ABC soil. A soil having an $A, a B$, and a $C$ horizon.
$A C$ soil. $A$ soil having only an $A$ and a $C$ horizon. Commonly, such soil formed in recent alluvium or on steep, rocky slopes.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alkali (sodic) soil. A soil having so high a degree of alkalinity ( pH 8.5 or higher) or so high a percentage of exchangeable sodium ( 15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Alluvial cone. See Alluvial fan.
Alluvial fan. A low, outspread mass of loose material and/or rock material, commonly with gentle slopes, shaped like an open fan or a segment of a cone, deposited by a stream at the place where it issues from a narrow mountain valley or where a tributary stream is near or at its junction with the main stream. It is steepest near the mouth of the valley where its apex points upstream, and it slopes gently and convexly outward with a gradual decrease in gradient.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha,alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Animal unit month (AUM). The amount of forage
required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Aspect. The direction in which a slope faces.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Atterberg limits. The collective designation of seven limits of consistency of fine grained soils, suggested by Albert Atterberg, 1911-1912. Current usage usually retains only the liquid limit, the plastic limit, and the plasticity index.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60-inch profile or to a limiting layer is expressed as:
Very low ............................................................................................................................................................................................................................................................... more than 10
Low 10

AWC. See Available water capacity
Backslope. The hillslope profile position that forms the steepest and generally linear, middle portion of the slope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below. They may or may not include cliff segments (i.e., free faces).
Backslopes are commonly erosional landforms produced by mass movement, colluvial action, and running water.
Base saturation. The degree to which material having cation-exchange properties is saturated with
exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K ), expressed as a percentage of the total cationexchange capacity.
Basin floor. A general term for the nearly level, lowermost part of intermontane basins (i.e., bolsons and semibolsons). The floor includes all of the alluvial, eolian, and erosional landforms below the piedmont slope.
Bedding planes. Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.
Bedding system. A drainage system made by plowing, grading, or otherwise shaping the surface of a flat field. It consists of a series of low ridges separated by shallow, parallel dead furrows.
Bedrock. A general term for the solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bench terrace. A raised, level or nearly level strip of earth constructed on or nearly on the contour, supported by a barrier of rocks or similar material, and designed to make the soil suitable for tillage and to prevent accelerated erosion.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Bottom land. The normal flood plain of a stream, subject to flooding.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Breaks. The steep and very steep broken land at the border of an upland summit that is dissected by ravines.
Breast height. An average height of 4.5 feet above the ground surface; the point on a tree where diameter measurements are ordinarily taken.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Bulk density. The weight of ovendry soil per unit volume. Bulk density is commonly expressed in grams per cubic centimeter or pounds per cubic foot.
Butte. An isolated, generally flat-topped hill or
mountain with relatively steep slopes and talus or precipitous cliffs and characterized by a summit width that is less than the height of bounding escarpments, commonly topped by a caprock of resistant material and representing an erosion remnant carved from flat-lying rocks.
Cable yarding. A method of moving felled trees to a nearby central area for transport to a processing facility. Most cable yarding systems involve use of a drum, a pole, and wire cables in an arrangement similar to that of a rod and reel used for fishing. To reduce friction and soil disturbance, felled trees generally are reeled in while one end is lifted or the entire log is suspended.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Calcium carbonate equivalent. The quantity of carbonate $\left(\mathrm{CO}_{3}\right)$ in the soil expressed as $\mathrm{CaCO}_{3}$ and as a weight percentage of the soil material that is less than 2 millimeters in size.
California bearing ratio (CBR). The load-supporting capacity of a soil as compared to that of standard crushed limestone, expressed as a ratio. First standardized in California. A soil having a CBR of 16 supports 16 percent of the load that would be supported by standard crushed limestone, per unit area, with the same degree of distortion.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Canyon. A long, deep, narrow, very steep sided valley with high, precipitous walls in an area of high local relief.
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Catena. A sequence of soils across a landscape that are about the same age, formed in similar kinds of parent material and under similar climatic conditions, but have different characteristics because of variations in relief and drainage.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity (CEC). The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality ( pH 7.0 ) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.

CEC. See Cation-exchange capacity.
Cement rock. Shaly limestone used in the manufacture of cement.
Channery soil material. Soil material that is, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches ( 15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Claypan. A dense, compact, slowly permeable layer in the subsoil. It has a much higher clay content than the overlying material, from which it is separated by a sharply defined boundary. It is usually hard when dry and plastic or sticky when wet.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches ( 7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that is 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches ( 7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility percent.
Colluvium. Unconsolidated, unsorted earth material transported or deposited on side slopes and/or at the base of slopes by mass movement (e.g., direct gravitational action) and by local, unconcentrated runoff.

Compaction. The process by which soil grains are rearranged in a manner that decreases void space and brings the grains into closer contact with one another, thereby increasing the bulk density.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Conglomerate. A coarse grained, clastic sedimentary rock composed of rounded or subangular rock fragments more than 2 millimeters in diameter. It commonly has a matrix of sand and finer textured material. Cements include silica, calcium carbonate, and iron oxides. Conglomerate is the consolidated equivalent of gravel.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soil-improving crops and practices more than offset the effects of the soildepleting crops and practices. Cropping systems are needed on all tilled soils. Soil-improving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of
puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cross-slope farming. Deliberately conducting farming operations on sloping farmland in such a way that tillage is across the general slope.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Culmination of the mean annual increment (CMAI). The average annual increase per acre in the volume of a stand. Computed by dividing the total volume of the stand by its age. As the stand increases in age, the mean annual increment continues to increase until mortality begins to reduce the rate of increase. The point where the stand reaches its maximum annual rate of growth is called the culmination of the mean annual increment.
Decreasers. The most heavily grazed climax range plants. Because they are the most palatable, they are the first to be destroyed by overgrazing.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is nearly flat and fan shaped; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.
Depth, soil. Generally, the thickness of the soil over
bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Depth to bedrock (in tables). Bedrock is too near the surface for the specified use.
Dip slope. A slope of the land surface, roughly determined by and approximately conforming to the dip of underlying bedrock.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Divided-slope farming. A form of field stripcropping in which crops are grown in a systematic arrangement of two strips, or bands, across the slope to reduce the hazard of water erosion. One strip is in a close-growing crop that provides protection from erosion, and the other strip is in a crop that provides less protection from erosion. This practice is used where slopes are not long enough to permit a full stripcropping pattern to be used.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognizedexcessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Draw. A small stream channel, generally more open and with a broader floor than a ravine or gulch.
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
EC. See Electrical conductivity
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/or proportion of species or in total production.

Electrical conductivity (EC). The electrolytic conductivity of an extract from saturated soil paste.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian. Pertaining to material transported and deposited by the wind. Includes earth materials, such as dune sands, sand sheets, loess deposits, and clay.
Ephemeral stream. Generally a small stream, or upper reach of a stream, that flows only in direct response to precipitation. It receives no protracted supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by running water, waves, or moving ice and wind or by such processes as mass wasting and corrosion (solution and other chemical processes). The term "geologic erosion" refers to natural erosion occurring over long (geologic) timespans. "Accelerated erosion" refers to erosion that is in excess of what is presumed or estimated to be naturally occurring levels and is a direct result of human activities.
Erosional pavement. A concentration of gravel or larger rock fragments that remains on the soil surface as a lag after finer particles have been removed by running water or wind.
Escarpment. A relatively continuous cliff or relatively steep slope, produced by erosion or faulting, breaking the general continuity of more gently sloping land surfaces. The term is most commonly applied to cliffs produced by differential erosion, and it is commonly used synonymously with "scarp."
Extrusive. An adjective for igneous rocks and sediments derived from deep-seated molten matter (magma) deposited and cooled on the earth's surface (including lava flows and tephra deposits).
Fallow. Cropland left idle in order to restore productivity through accumulation of moisture. Summer fallow is common in regions of limited rainfall where cereal grain is grown. The soil is
tilled for at least one growing season for weed control and decomposition of plant residue.
Fan piedmont. The most extensive landform on piedmont slopes, formed by a) the lateral, downslope coalescence of mountain-front alluvial fans into one generally smooth slope with or without the transverse undulations of the semiconical alluvial fans and b) accretions of fan aprons.
Fan remnant. A general term for a landform that is the remaining part of an older fan landform, such as an alluvial fan, fan apron, inset fan, or fan skirt. It has been either dissected (an erosional fan remnant) or partially buried (a nonburied fan remnant). An erosional fan remnant must have a relatively flat summit that is a relict fan surface. A nonburied fan remnant is a relict surface in its entirety.
Fan terrace. See Fan remnant.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fill slope. A sloping surface consisting of excavated soil material from a road cut. It commonly is on the downhill side of the road.
Fine textured soil. Sandy clay, silty clay, or clay.
Firebreak. Area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the movement of firefighters and equipment. Designated roads also serve as firebreaks.
First bottom. The normal flood plain of a stream, subject to frequent or occasional flooding.
Flaggy soil material. Material that is, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.

Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches ( 15 to 38 centimeters) long.
Flood plain. The nearly level plain that borders a stream and is subject to inundation under floodstage conditions unless protected artificially. It is generally a constructional landform built of sediment deposited during overflow and lateral migration of the streams.
Fluvial. Of or pertaining to rivers; produced by river action.
Foothill. A steeply sloping upland that has relief of as much as 1,000 feet ( 300 meters) and fringes a mountain range or high-plateau escarpment.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Fragments. Unattached cemented pieces of bedrock, bedrocklike material, durinodes, concretions, and nodules 2 or more millimeters in diameter and woody material 20 or more millimeters in size in organic soils.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Gilgai. Commonly, a succession of microbasins and microknolls in nearly level areas or of microvalleys and microridges parallel with the direction of the slope. Typically, the microrelief of clayey soils that shrink and swell considerably with changes in moisture content. These soils have large amounts of smectitic clay.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Graded stripcropping. Growing crops in strips that grade toward a protected waterway.
Granitic. Generally pertaining to an igneous intrusive rock of felsic to intermediate composition. The rock is like granite but is not necessarily true granite. Commonly, the term is applied to granite, quartz monzonite, granodiorite, and diorite.

Gravel. Rounded or angular fragments of rock as much as 3 inches ( 2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.
Gravelly soil material. Material that is 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches ( 7.6 centimeters) in diameter.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A small channel with steep sides caused by erosion and cut by a concentrated but intermittent flow of water, usually during and immediately following heavy rains or during periods after ice or snow melts. A gully generally is an obstacle to wheeled vehicles and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hardpan. A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet ( 300 meters) above surrounding lowlands, generally of restricted summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is often dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey

Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
$B$ horizon.-The mineral horizon below an $A$ horizon. The $B$ horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.
C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2 , precedes the letter C.
Cr horizon.-Soft, consolidated bedrock beneath the soil.
$R$ layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an $A$ or a $B$ horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rocks. Examples: andesite, basalt, and granite.
Illuviation. The movement of soil material from one
horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Increasers. Species in the climax vegetation that increase in amount as the more desirable plants are reduced by close grazing. Increasers commonly are the shorter plants and the less palatable to livestock.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Inset fan. The flood plain of an ephemeral stream that is confined between fan remnants, ballenas, basin-floor remnants, or closely opposed fan toeslopes of a basin.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

Less than 0.2 ........................................ very low	
0.2 to 0.4	...... low
0.4 to 0.75 ................................... moderately low	
0.75 to 1.25 ......................................... moderate	
1.25 to 1.75 ................................ moderately high	
1.75 to 2.5 ................................................. high	
More than 2.5 .	.. very high

Intermittent stream. A stream, or reach of a stream, that does not flow throughout the year (is commonly dry for 3 or more months of the year) and has a channel that is generally below the local water table. It flows only when it receives base flow during wet periods or when it receives ground-water discharge or protracted contributions from melting snow or other erratic surface and shallow subsurface sources.
Intrusive. An adjective for igneous rocks derived from molten matter (magma) that invaded preexisting rocks and cooled below the surface of the earth.
Invaders. On range, plants that encroach into an area
and grow after the climax vegetation has been reduced by grazing. Generally, plants invade following disturbance of the surface.
Iron depletions. Low-chroma zones having a low content of iron and manganese oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are: Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders.
Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of closegrowing crops or in orchards so that it flows in only one direction.
Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements. Furrows are used for tree and row crops.
Level basin (paddy).-Water is applied to a level plain surrounded by levees or dikes.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
K factor. A measurement of potential soil erodibility caused by detachment of soil particles by water.
Knoll. A small, low, rounded hill rising above adjacent landforms.
Lacustrine deposit. Clastic sediments and chemical precipitates deposited in lakes.
Landslide. The rapid downhill movement of a mass of soil and loose rock, generally when wet or saturated. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Leaching. The removal of soluble material from soil or other material by percolating water.

LEP. See Linear extensibility percent.
Linear extensibility percent (LEP). The linear expression of the volume difference of natural soil fabric at $1 / 3$ - or $1 / 10$-bar water content and oven dryness. The volume change is reported as percent change for the whole soil.
Liquid limit (LL). The moisture content at which the soil passes from a plastic to a liquid state.
LL. See Liquid limit.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loess. Material transported and deposited by wind and consisting dominantly of silt-size clastics.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Low strength. The soil is not strong enough to support loads.
Marl. An earthy, unconsolidated deposit consisting chiefly of calcium carbonate mixed with clay in approximately equal proportions ( 35 to 65 percent each). It formed primarily in freshwater lacustrine areas, but varieties associated with more saline environments also occur.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Mesa. A broad, nearly flat-topped, and commonly isolated upland mass characterized by summit widths that are more than the heights of bounding erosional scarps. Also, a broad structural bench and alluvial terrace at intermediate levels in stepped sequences of platforms bordering canyons and valleys.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline. Examples: schist, gneiss, quartzite, slate, and marble.

Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance-few, common, and many; size-fine, medium, and coarse; and contrastfaint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).
Mountain. A natural elevation of the land surface, rising more than 1,000 feet ( 300 meters) above surrounding lowlands, generally of restricted summit area relative to surrounding surfaces and generally having steep sides (a slope of more than 25 percent), with or without a considerable surface of bare rock. A mountain can occur as a single, isolated mass or in a group forming a chain or range. Mountains are formed primarily through tectonic activity and/or volcanic action and secondarily through differential erosion.
Muck. Unconsolidated soil material consisting primarily of highly decomposed organic material in which the original plant parts are not recognizable. It generally is darker than peat and has more mineral material. (See Sapric soil material.)
Mudstone. A blocky or massive, fine grained sedimentary rock in which the proportions of clay and silt are approximately equal "Mudstone" also is a general term that includes clay, silt, claystone, siltstone, shale, and argillite and that should be used only when the amounts of clay and silt are not known or cannot be precisely identified.

Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 Y R 6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4.

Natric horizon. A special kind of argillic horizon that contains enough exchangeable sodium to have an adverse effect on the physical condition of the subsoil.
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
OM. See Organic matter.
Organic matter (OM). Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:


Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated and more or less chemically weathered mineral or organic material in which the solum of a soil forms through pedogenic processes.
Peat. Unconsolidated soil material, largely undecomposed or slightly decomposed organic matter, that has accumulated under conditions of excess moisture. See Fibric soil material.
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pediment. A gently sloping erosional surface developed at the foot of a receding hill or mountain slope. The surface may be essentially bare, exposing earth material that extends beneath adjacent uplands, or it may be thinly mantled with
alluvium and colluvium, ultimately in transit from an upland front to a basin or valley lowland. In hillfootslope terrain, the mantle is designated "pedisediment." The term has been used in several geomorphic contexts: Pediments may be classed with respect to (a) landscape positions, for example, intermontane-basin piedmont or valley-border footslope surfaces (respectively, apron and terrace pediments; (b) type of material eroded, bedrock or regolith; or (c) combinations of the above.
Pedisediment. A layer of sediment, eroded from the shoulder and backslope of an erosional slope, that lies on a pediment and currently is or formerly was transported across the pediment.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet ( 1 square meter to 10 square meters), depending on the variability of the soil.
Perched water table. The upper surface of unconfined ground water separated from and underlying the main body of ground water by an unsaturated zone.
Percolation. The downward movement of water through the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

Extremely slow.	0.01 inch
Very slow	0.01 to 0.06 inch
Slow.	... 0.06 to 0.2 inch
Moderately slow	.... 0.2 to 0.6 inch
Moderate	0.6 inch to 2.0 inches
Moderately rapid	....... 2.0 to 6.0 inches
Rapid	. 6.0 to 20 inches
Very rapid	more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
PI. See Plasticity index.
Piedmont. As an adjective, lying or formed at the
base of a mountain or mountain range; e.g., a piedmont terrace or a piedmont pediment. As a noun, an area, plain, slope, glacier, or other feature at the base of a mountain; e.g., a foothill or bajada.
Plasticity index (PI). The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plateau (geomorphology). A comparatively flat area of great extent and elevation. Specifically, an extensive land region considerably elevated (more than 100 meters) above adjacent lower lying terrain and commonly limited on at least one side by an abrupt descent A comparatively large part of a plateau surface is near the summit level.
Plowpan. A compacted layer formed in the soil directly below the plowed layer.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Range condition. The present composition of the
plant community on a range site in relation to the potential natural plant community for that site. Range condition is expressed as excellent, good, fair, or poor on the basis of how much the present plant community has departed from the potential.
Rangeland. Land on which the potential natural vegetation is predominantly grasses, grasslike plants, forbs, or shrubs. It includes natural grasslands, savannas, many wetlands, some deserts, tundras, and areas that support certain forb and shrub communities.
Range site. An area of rangeland where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. A range site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other range sites in kind or proportion of species or total production.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultra acid	less than 3.5
Extremely acid	3.5 to 4.4
Very strongly acid	4.5 to 5.0
Strongly acid	5.1 to 5.5
Moderately acid	... 5.6 to 6.0
Slightly acid	6.1 to 6.5
Neutral	6.6 to 7.3
Slightly alkaline	... 7.4 to 7.8
Moderately alkaline	.... 7.9 to 8.4
Strongly alkaline	...... 8.5 to 9.0
Very strongly alkalin	9.1 and higher

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.
Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alphadipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Reduced matrix. A soil matrix that has low chroma in
situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.
Regolith. The unconsolidated mantle of weathered rock and soil on the earth's surface; the loose earth material above the solid rock.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rhyolite. A group of extrusive igneous rocks, generally porphyritic and exhibiting flow texture, with phenocrysts of quartz and alkali feldspar in a glassy cryptocrystalline ground mass. Also, any rock in that group; the extrusive equivalent of granite.
Rill. A small channel with steep sides caused by erosion and cut by a concentrated but intermittent flow of water, usually during and immediately following moderate rains or during periods after ice and snow melt. Generally, a rill is not an obstacle to wheeled vehicles and is shallow enough to be obliterated by ordinary tillage.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, gravel, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
SAR. See Sodium adsorption ratio.
Saline soil. A soil containing soluble salts in an amount that impairs plant growth. A saline soil does not contain excess exchangeable sodium. Salinity is expressed as the electrical conductivity of a saturation extract in millimhos per centimeter (mmhos/cm) at 25 degrees C. Salinity classes are:

0 to 2 .......................................................... nonsaline	
2 to 4 ..................................... very slightly saline	
4 to 8	......... slightly saline
8 to 16	moderately saline
ore	... strongly saline

Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saprolite. Soft, friable, isovolumetrically weathered bedrock that retains the fabric and structure of the parent rock exhibiting extensive intercrystal and intracrystal weathering. In pedology, the term "saprolite" was formerly applied to any unconsolidated residual material underlying the soil and grading to hard bedrock below.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Scarification. The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
Second bottom. The first terrace above the normal flood plain (or first bottom) of a river.
Sedimentary rock. A consolidated deposit of clastic particles, chemical precipitates, or organic remains accumulated at or near the surface of the earth under "normal" low temperature and pressure conditions. Sedimentary rocks include consolidated equivalents of alluvium, colluvium, drift, and eolian, lacustrine, marine deposits, e.g., sandstone, siltstone, mudstone, claystone, shale, conglomerate, limestone, dolomite, and coal.
Seepage. The movement of water through soil. Seepage adversely affects the specified use.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by induration of a deposit of clay, silty clay, or silty clay loam and tending to split into thin layers.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.

Shoulder. The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
Shrink-swell. The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage rods, dams, building foundations, and other structures. It can also damage plant roots.
Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silica-sesquioxide ratio. The ratio of the number of molecules of silica to the number of molecules of alumina and iron oxide. The more highly weathered soils or their clay fractions in warmtemperate, humid regions, and especially those in the tropics, generally have a low ratio.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay ( 0.002 millimeter) to the lower limit of very fine sand ( 0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Siltstone. Sedimentary rock made up of dominantly silt-sized particles.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Sinkhole. A closed depression formed either by solution of the surficial bedrock, e.g., limestone, or gypsum, or by the collapse of underlying caves. Complexes of sinkholes in carbonate-rock terrain are the main components of karst topography.
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slick spot. A small area of soil having a puddled, crusted, or smooth surface and an excess of exchangeable sodium. The soil generally is silty or clayey, is slippery when wet, and is low in productivity.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100 . Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. In
this survey, classes for simple slopes are as follows:
Nearly level ........................................... 0 to 2 percent
Gently sloping .............................. 2 to 5 percent
Moderately sloping ......................... 5 to 9 percent
Strongly sloping ........................ 9 to 15 percent
Moderately steep......................... 15 to 30 percent
Steep ............................................. 50 to 50 percent and higher
Very steep ...............

Classes for complex slopes are as follows:

Nearly level ................................... 0 to 2 percent	
Gently rolling .................................. 5 to 9 percent	
Rolling ......................................... 9 to 15 percent	
Hilly .......................................... 15 to 30 percent	
Steep ........................................ 30 to 50 percent	
Very steep	percent and higher

Sloughed till. Water-saturated till that has flowed slowly downhill from its original place of deposit by glacial ice. It may rest on other till, on glacial outwash, or on a glaciolacustrine deposit.
Sodic (alkali) soil. A soil having so high a degree of alkalinity ( pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Sodicity. The degree to which a soil is affected by exchangeable sodium. Sodicity is expressed as a sodium adsorption ratio (SAR) of a saturation extract, or the ratio of $\mathrm{Na}^{+}$to $\mathrm{Ca}^{++}+\mathrm{Mg}^{++}$. The degrees of sodicity and their respective ratios are:

```
Slight less than 13:1
Moderate 13-30:1
Strong ... more than 30:1
```

Sodium adsorption ratio (SAR). A measure of the amount of sodium ( Na ) relative to calcium (Ca) and magnesium ( Mg ) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of onehalf of the $\mathrm{Ca}+\mathrm{Mg}$ concentration.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil erodibility factors. Factors (Kw) and (Kf) are erodibility factors which quantify the susceptibility of soil to detachment by water. These erodibility factors predict the long-term average soil loss
which results from sheet and rill erosion under various alternative combinations of cropping systems and conservation techniques. Factor Kw indicates the erodibility of the whole soil, and factor Kf indicates the erodibility only the fineearth fraction, which is the material less than 20 millimeters in diameter.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

Very	2.0 to 1.0
Coarse sand	... 1.0 to 0.5
Medium sand	. 0.5 to 0.25
Fine sand	0.25 to 0.10
Very fine sand	. 0.10 to 0.05
Silt	0.05 to 0.002
	ess than 0.002

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and $B$ horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of rock fragments in a soil. In cross section, the line may be marked only by scattered fragments or it may be a discrete layer of fragments. The fragments are more commonly pebbles or cobbles than stones. A stone line generally overlies material that was subject to weathering, soil formation, and erosion before deposition of the overlying material. Many stone lines seem to be buried erosion pavements, originally formed by running water on the land surface and concurrently covered by surficial sediment.
Stones. Rock fragments 10 to 24 inches ( 25 to 60 centimeters) in diameter if rounded or 15 to 24 inches ( 38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Storie index. A numerical index expressing the relative degree of suitability of a soil for general intensive agricultural uses at the time of the evaluation. The index is based on soil characteristics and is obtained by evaluating surface and subsurface chemical and physical soil properties as well as surface landscape features.
Stratified. Formed, arranged, or laid down in layers. The term refers to geologic deposits. Layers in soils that result from the processes of soil
formation are called horizons; those inherited from the parent material are called strata.
Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are-platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Stubble mulch. Stubble or other crop residue left on the soil or partly worked into the soil. It protects the soil from wind erosion and water erosion after harvest, during preparation of a seedbed for the next crop, and during the early growing period of the new crop.
Subsidence. The decrease in surface elevation as a result of the drainage of wet soils that have organic layers or semifluid, mineral layers.
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter a hardpan or claypan.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Summer fallow. The tillage of uncropped land during the summer to control weeds and allow storage of moisture in the soil for the growth of a later crop. A practice common in semiarid regions, where annual precipitation is not enough to produce a crop every year. Summer fallow is frequently practiced before planting winter grain.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches ( 10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
T factor. The soil loss tolerance factor. An estimate of the maximum annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.
Talus. Rock fragments of any size or shape (generally coarse and angular) derived from and lying at the
base of a cliff or very steep rock slope. The accumulated mass of such, loose broken rock formed chiefly by falling, rolling, or sliding.
Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Temperature regime, soil. A system that categorizes, for taxonomic purposes, general, long-term soil temperature conditions at the standard depth of 20 inches or at the bedrock surface, whichever is shallower. The various regimes are defined according to the freezing point of water or the high and low extremes for significant biological activity.
The regimes, which are fully defined in "Keys to Soil Taxonomy," are outlined as follows: Cryic.-Soils that have a mean annual temperature between 32 and 47 degrees $F$ and that remain cold in summer.
Frigid.-Soils that have a mean annual temperature similar to that of the soils in the cryic regime but that have an average summer temperature that is at least 9 degrees $F$ warmer.
Mesic.-Soils in which the mean annual temperature is between 47 and 59 degrees $F$ and the difference between summer and winter temperatures is more than 9 degrees. Thermic.-Soils in which the mean annual temperature is between 59 and 72 degrees $F$ and the difference between mean summer and winter temperatures is more than 9 degrees.
Hyperthermic.-Soils in which the mean annual temperature is more than 72 degrees $F$ and the difference between mean summer and mean winter temperatures is more than 9 degrees.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy
loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Till plain. An extensive area of nearly level to undulating soils underlain by glacial till.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The outermost inclined surface at the base of a hill; part of a footslope.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Tuff. Any consolidated or cemented deposit that is 50 percent volcanic ash (less than 2 millimeters in size).
Unified soil classification. A system for classifying soils for engineering purposes based on particlesize characteristics, liquid limit, and plasticity index.
Upland (geomorphology). A general term for the higher ground of a region, in contrast with low adjacent land, such as a valley or plain. Land at a higher elevation than the flood plain or low stream terrace and land above the footslope zone of the hillslope continuum.
Valley fill. The unconsolidated sediment, deposited by any agent (water, wind, ice, or mass wasting), filling or partly filling a valley.
Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent
material rather than to be the result of poor drainage.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Water table. The upper surface of ground water or that level below which the soil is saturated by water. Also, the top of an aquifer.
WEG. See Wind erodibility group.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Wind erodibility group (WEG). A group of soils that have similar properties affecting their resistance to soil blowing in cultivated areas.
Wind erodiblility index (WEI). A numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion.
Windthrow. The uprooting and tipping over of trees by the wind.

## Appendices

Appendix $A$ is an excerpt from California supplement CA-4 to the National Conservation Planning Manual, dated February 1981, United States Department of Agriculture, Soil Conservation Service.

Appendix B is an edited version of the guides for assigning soils to land capability classes, subclasses, and units. The original documentation is a California guide dated April 2000.

Appendix C consists of excerpts from guides used for the Storie index ratings, dated 1978 and 1948.

## Appendix A.-Prime Farmlands-California

Prime farmland is land best suited for producing food, forage, fiber, and oilseed crops and also available for these uses (the land could be cropland, pastureland, rangeland, forest land, or other land but not urban builtup land or water). It has the soil quality, growing season, and moisture supply needed to produce sustained high yields of crops economically when treated and managed, including water management, according to modern farming methods.

Prime farmland meets all of the following criteria:

1. The soils have:
a. Aquic, udic, ustic, or xeric moisture regimes and an available water capacity of at least 4 inches ( 10 cm ) per 40 to 60 inches ( 1 to 1.52 meters) of soil to produce the commonly grown cultivated crops (cultivated crops include, but are not limited to, grain, forage, fiber, oilseed, sugarbeets, vegetables, orchard, vineyard, and bush fruit crops) adapted to the region in 7 or more years out of 10; or
b. Xeric, ustic, aridic, or torric moisture regimes in which the available water capacity is at least 4 inches $(10 \mathrm{~cm})$ per 40 to 60 inches ( 1 to 1.52 meters) of soil and the area has a developed irrigation water supply that is dependable (a dependable water supply is one in which enough water is available for irrigation in 8 out of 10 years for the crops commonly grown) and of adequate quality; and,
2. The soils have a temperature regime that is frigid, mesic, thermic, or
hyperthermic (pergelic and cryic regimes are excluded). These are soils that, at a depth of 20 inches ( 50 cm ), have a mean annual temperature higher than 32 degrees $F(0$ degrees $C$ ). In addition, the mean summer temperature at this depth in soils with an $O$ horizon is higher than 47 degrees $F$ ( 8 degrees $C$ ); in soils that have no $O$ horizon, the mean summer temperature is higher than 59 degrees $F$ (15 degrees C); and,
3. The soils have a pH between 4.5 and 8.4 in all horizons within a depth of 40 inches ( 1 meter); and,
4. The soils either have no water table or have a water table that is maintained at a sufficient depth during the cropping season to allow cultivated crops common to the area to be grown; and,
5. The soils can be managed so that, in all horizons within a depth of 40 inches ( 1 meter), during part of each year the conductivity of the saturation extract is less than $4 \mathrm{mmhos} / \mathrm{cm}$ and the exchangeable sodium percentage (ESP) is less than 15 ; and,
6. The soils are not flooded frequently during the growing season (less often than once in 2 years); and,
7. The product of K (erodibility factor) $\times$ percent slope is less than 2.0; and,
8. The soils have a permeability rate of at least 0.06 inch $(0.15 \mathrm{~cm})$ per hour in the upper 20 inches ( 50 cm ) and the mean annual soil temperature at a depth of 20 inches ( 50 cm ) is less than 59 degrees $F$ ( 15 degrees C); the permeability rate is not a limiting factor if the mean annual soil temperature is 59 degrees F (15 degrees C) or higher; and,
9. Less than 10 percent of the surface layer [upper 6 inches ( 15 cm )] in these soils consists of rock fragments coarser than 3 inches ( 7.6 cm ); and,
10. The soils have a minimum rooting depth of 40 inches ( 1 meter).

The national Land Inventory Monitoring (LIM) definitions have been slightly modified for California standards: criterion 1 is a California definition, not a national one. Part A which reads "AWC of at least 4 inches ( 10 cm ), per 40 to 60 inches ( 1 to 1.52 meters) of soil" is a California definition.

Appendix B.-Guide for Placing Soils in Capability Classes

Criteria	Capability class							
	1	2	3	4	5	$6^{12}$	$7^{13}$	$8^{14}$
Effective soil depth (in) ${ }^{1}$	$\geq 40$	$\geq 40$	$\geq 20$	$\geq 10$	$\geq 20$	$\geq 10$	Any	Any
ETp 32 degrees   F $\qquad$	$\geq 20$	$\geq 14$	$\geq 10$	$\geq 6$	$\geq 6$	$\geq 4$	---	Any
4ETa .................	$\geq 20$	$\geq 16$	$\geq 12$	$\geq 8$	$\geq 8$	$\geq 6$	$\geq 2$	Any
Surface texture (irrigated) $\qquad$	SL-CL	LS-C, may be GR	Any, may be GR, CB	Any, may be GRV, CBV, ST ${ }^{10}$	Any, may be GRX, CBX, STV	$\begin{gathered} \text { Any, may be } \\ \text { GRX, CBX, STV } \end{gathered}$	Any	Any
Surface texture (nonirrigated)	SL-CL	SL-C, may be GR	SL-C, may be, GR, CB	LS-C, GRV,   CBV, ST ${ }^{10}$	Any, may be GRX, CBX, STV	Any, may be GRX, CBX, STV	Any	Any
Permeability (in/hr) ${ }^{2}$ $\qquad$	0.2-6.0	0.06-20	<0.06-20	Any	Any	Any	Any	Any
Depth to water table (in) ${ }^{3}$	Well or mod. well $>60$	Somewhat poorly through somewhat excessively $>36$	Poorly through excessively >20	Poorly through excessively >20	Any	Any	Any	Any
Available water capacity (in) ${ }^{4}$...	$\begin{aligned} & 27.5 \mathrm{avg} . \mathrm{AWC} \\ & \geq 0.13 \mathrm{in} / \mathrm{in} \end{aligned}$	$\begin{gathered} \geq 5.0 \mathrm{avg} . \mathrm{AWC} \\ \geq 0.08 \mathrm{in} / \mathrm{in} \end{gathered}$	$\begin{gathered} \geq 3.5 \text { avg. AWC } \\ \geq 0.06 \mathrm{in} / \mathrm{in} \end{gathered}$	$\begin{gathered} \geq 2.5 \mathrm{avg} . \mathrm{AWC} \\ \geq 0.04 \mathrm{in} / \mathrm{in} \end{gathered}$	$\geq 3.0$ avg. AWC	$\geq 2.0$ avg. AWC	$\begin{aligned} & \geq 1.0 \text { avg. } \\ & \text { AWC } \end{aligned}$	Any
Slope (\%): ${ }^{5,6,7}$   Group A. $\qquad$   Group B. $\qquad$	<2	<5	<8	<15	<2	<25	<50	Any Any
Erosion hazard ..	None or slight	None through moderate	None through high	Any	None or slight	Any	Any	Any
Flooding .............	None or rare	None through occasional	None through occasional	None through frequent ${ }^{11}$	Any	Any	Any	Any
$\begin{aligned} & \text { Salinity/EC } \times 10 \\ & \text { at } 25 \text { degrees } \mathrm{C} \\ & (\mathrm{mmhos} / \mathrm{cm})^{8} \ldots \end{aligned}$	<4	<8	<16	<16	<8	Dryland, <16   Irrigated, any	Any	Any
Alkali ESP ${ }^{8}$........	None	<25	<50	<50	<25	Dryland, <25   Irrigated, <50	Any	Any

## Guide for Placing Soils in Capability Classes-Continued

Criteria	Capability class							
	1	2	3	4	5	$6^{12}$	$7^{13}$	$8^{14}$
Toxic substances ${ }^{9}$	None	None or slight	None through moderate	None through moderate	None or slight	Dryland, slight Irrigated, slight through moderate	Any	Any
Frost-free season (32 degrees F)	$\geq 140$ days	$\geq 100$ days	$\geq 80$ days	$\geq 50$ days	Any	Any	Any	Any

${ }^{1}$ Claypans with permeability of less than 0.06 inch/hour will be treated as limiting the effective depth.
${ }^{2}$ Permeability of the least permeable subsurface horizon.
${ }^{3}$ Depth to the water table during the growing season.
${ }^{4}$ Available moisture between field capacity and wilting point.
${ }^{5}$ Use erosion hazard to help determine upper slope percent.
${ }^{6}$ In existing map units, 9 percent and 30 percent can be substituted for 8 percent and 25 percent.
${ }^{7}$ Group A includes soils with K factors of 0.37 or more and soils that are subject to rill and gully erosion, such as soils that formed in granitic material and soils that have a claypan. Other soils are in group B.
${ }^{8}$ For salts and alkali to be a major limitation, there should be other soil limitations, such as slow permeability or a high water table.
${ }^{9}$ Such as boron and magnesium, which are leached with difficulty.
${ }^{10}$ Rock fragments interfere with tillage but do not prevent cropping.
${ }^{11}$ Frequent flooding that does not prevent normal cropping.
${ }^{12}$ Range and woodland mechanical practices can be applied to class 6 land.
${ }^{13}$ Range and woodland mechanical practices are impractical on class 7 land.
${ }^{14}$ Class 8 lands have limitations that preclude their use for commercial plant production and restrict their use to recreation, water supply, or esthetic purposes.

## Guide for Placing Soils in Capability Subclasses in California-A

(Where wind velocities are low and/or soils are irrigated. Only the soils in capability classes 2 through 8 are assigned to a subclass.)


## Guide for Placing Soils in Capability Subclasses in California-A (Continued)

Soil properties	Subclass by slope range 1			
	$0-2 \%$	$2-9 \%$	$9-15 \%$	$15+\%$
5. Excessively drained, somewhat   excessively drained, well drained, and   moderately well drained, saline and   sodic soils (moderate to severe				
salinity and sodicity) ........................	s	e	e	e
6. Soils that have a very cobbly,   extremely cobbly, very gravelly,   extremely gravelly, very stony, or   extremely stony surface layer.............	s	s	s	$\mathrm{s}^{7}$
7. Soils that are subject to damaging   overflow ................................................	w	w	w	e

${ }^{1}$ For soils in capability classes 2 through 8 . Class 1 land is excluded.
${ }^{2}$ Where these soils are more than 40 inches deep, they are generally in class 1 .
${ }^{3}$ Use "C" only for dryland if soil is class 1 irrigated.
${ }^{4}$ Permeability of the B horizon or control section.
${ }^{5}$ Including somewhat poorly drained soils.
${ }^{6}$ Subclass "e" if slope is more than 50 percent.
${ }^{7}$ Subclass "e" if slope is more than 30 percent.

## Guide for Placing Soils in Capability Subclasses in California-B

(Where wind velocities are high and the soils are not irrigated. Only soils in capability classes 2 through 8 are assigned to a subclass.)

Soil properties	Subclass by slope range ${ }^{1}$			
		$0-2 \%$	$2-9 \%$	$9-15 \%$

## Guide for Placing Soils in Capability Subclasses in California-B (Continued)

Soil properties	Subclass by slope range ${ }^{1}$			
		$0-2 \%$	$2-9 \%$	$9-15 \%$

[^1]
## Guide for Placing Soils in Capability Units

## Capability unit Principal soil property or limitation <br> Potential or actual wind or water erosion hazard. <br> Drainage or overflow hazard (somewhat or poorly drained, flooded, or ponded). <br> Slowly or very slowly permeable subsoils or substrata. <br> Coarse or gravelly textures. <br> Fine or very fine textures. <br> Salinity or alkali sufficient to constitue a continuing limitation or hazard. <br> Stones, cobbles, or rocks sufficient to interfere with tillage. <br> Hardpan or hard, unweathered bedrock within the root zone. <br> Low inherent fertility associated with strong acidity, a low calcium-magnesium ratio, or excess calcium, boron, or molydenum. <br> High organic matter content-peats and mucks. <br> Coarse-sandy or very gravelly substrata limiting to root penetration and moisture retention.

## Appendix C-Storie Soil-Rating Chart

(Storie soil index rating=factor $A x$ factor $B x$ factor $C x$ factor $X$. These factors are used to rate cropland and rangeland.)

Factor A—Rating on character of the physical profile
I. Soils on recent alluvial fans, flood plains, or other
secondary deposits having undeveloped
profiles .............................................................. 100
x--shallow phases (on consolidated material), 2 feet deep 50-60
x--shallow phase (on consolidated material), 3 feetdeep ..... 70
g-extremely gravelly subsoils ..... 80-95
s--stratified clay subsoils ..... 80-95
II. Soils on young alluvial fans, flood plains, or other secondary deposits having slightly developed profiles ..... 95-100
x--shallow phases (on consolidated material), 2 feet deep ..... 50-60
x--shallow phases (on consolidated material), 3 feet deep ..... 70
g--extremely gravelly subsoils ..... 80-95
s--stratified clay subsoils ..... 80-95
III. Soils on older alluvial fans, alluvial plains, or terraces having moderately developed profiles (moderately dense subsoils) ..... 80-95
x--shallow phases (on consolidated material), 2 feet deep ..... 40-60
x--shallow phases (on consolidated material), 3 feet deep ..... 60-70
g--extremely gravelly subsoils ..... 60-90
IV. Soils on older plains or terraces having strongly developed profiles (dense clay subsoils) ..... 40-80
V. Soils on older plains or terraces having hardpan subsoil layers:
at less than 1 foot ..... 5-20
at 1 to 2 feet ..... 20-30
at 2 to 3 feet ..... 30-40
at 3 to 4 feet ..... 40-50
at 4 to 6 feet ..... 50-80
VI. Soils on older terraces and upland areas having dense clay subsoils resting on moderately consolidated or consolidated material ..... 40-80
VII. Soils on upland areas underlain by hard igneous bedrock:
at less than 1 foot ..... 10-30
at 1 to 2 feet ..... 30-50
at 2 to 3 feet ..... 50-70
at 3 to 4 feet ..... 70-80
at 4 to 6 feet ..... 80-100
at more than 6 feet ..... 100
VIII. Soils on upland areas underlain by consolidated sedimentary rocks: ..... $10-30$
at 1 to 2 feet ..... 30-50
at 2 to 3 feet ..... 50-70
at 3 to 4 feet ..... 70-80
at 4 to 6 feet ..... 80-100
at more than 6 feet ..... 100
IX. Soils on upland areas underlain by softly consolidated material:
at less than 1 foot ..... 20-40
at 1 to 2 feet ..... 40-60
at 2 to 3 feet ..... 60-80
at 3 to 4 feet ..... 80-90
at 4 to 6 feet ..... 90-100
at more than 6 feet ..... 100
Factor B-—Rating on the basis of surface texture
Medium textured:
fine sandy loam ..... 100
loam ..... 100
silt loam ..... 100
sandy loam ..... 95
silty clay loam, calcareous ..... 95
silty clay loam, noncalcareous ..... 90
clay loam, calcareous ..... 95
clay loam, noncalcareous ..... 85-90
Heavy or fine textured:
silty clay, highly calcareous ..... 70-90
silty clay, noncalcareous ..... 60-70
clay, highly calcareous ..... 70-80
clay, noncalcareous ..... 50-70
Light or coarse textured:
coarse sandy loam ..... 90
loamy sand ..... 80
very fine sand ..... 80
fine sand ..... 65
sand ..... 60
coarse sand ..... 30-60
Gravelly:
gravelly fine sandy loam ..... 0-80
gravelly loam ..... 60-80
gravelly silt loam ..... 60-80
gravelly sandy loam ..... 50-70
gravelly clay loam. ..... 60-80
gravelly clay ..... 40-70
gravelly sand ..... 20-30
Stony:
stony fine sandy loam ..... 70-80
stony loam ..... 60-80
stony silt loam ..... 60-80
stony sandy loam ..... 50-70
stony clay loam ..... 60-80
stony clay ..... 40-70
stony sand ..... 10-40
Factor C-Rating on the basis of slope
A--Nearly level (0 to 2\%) ..... 100
AA--Gently undulating (0 to 2\%) ..... 95-100
B--Gently sloping (3 to 8\%) ..... 95-100
BB--Undulating (3 to 8\%) ..... 85-100
C--Moderately sloping (9-15\%) ..... 80-95
CC--Rolling (9 to 15\%) ..... 80-95
D--Strongly sloping (16 to 30\%) ..... 70-80
DD--Hilly (16 to 30\%) ..... 70-80
E--Steep (30 to 45\%) ..... 30-50
F--Very steep (45\% and over) ..... 5-30
Factor X—Rating of conditions other than those infactors A, B, and C
Drainage:
well drained ..... 100
fairly well drained ${ }^{1}$ ..... 80-90
moderately waterlogged ${ }^{2}$ ..... 40-80
badly waterlogged ${ }^{3}$ ..... 0-40
subject to overflow ..... variable
Alkali: ${ }^{4}$
alkali-free ..... 100
slightly affected ..... 60-95
moderately affected ..... 30-60
moderately to strongly affected ..... 15-30
strongly affected ..... 5-15
Nutrient (fertility level):
high ..... 100
fair. ..... 95-100
poor ..... 80-95
very poor ..... 60-80
Acidity: according to degree ${ }^{5}$ ..... 80-95
Erosion:
none to slight .....  100
detrimental deposition ..... 75-95

[^2]moderate sheet erosion ..... 80-95
occasional shallow gullies ..... 70-90
moderate sheet erosion with: shallow gullies ..... 60-80
deep gullies ..... 10-70
moderate sheet erosion with deep gullies ..... 10-60
severe sheet erosion ..... 50-80
severe sheet erosion with:
shallow gullies ..... 40-50
deep gullies ..... 10-40
very severe erosion ..... 10-40
moderate wind erosion ..... 80-95
severe wind erosion ..... 30-80
Microrelief:
smooth ..... 100
channels ..... 60-95
hogwallows ..... 60-95
low hummocks ..... 80-95
high hummocks ..... 20-60
dunes ..... 10-40

## Soil Grading

For simplification, six soil grades have been set up in California by combining soils having ranges in index rating as follows:

Grade 1 (excellent): Soils that rate between 80 and 100 percent and which are suitable for a wide range of crops, including alfalfa, orchard, truck, and field crops.
Grade 2 (good): Soils that rate between 60 and 79 percent and which are suitable for most crops. Yields are generally good to excellent.
Grade 3 (fair): Soils that rate between 40 to 59 percent and which are generally of fair quality, with a less wide range of suitability than grades 1 and 2 . Soils in this grade may give good results with certain specialized crops.
Grade 4 (poor): Soils that rate between 20 to 39 percent and which have a narrow range in their agricultural possibilities. For example, a few soils in this grade may be good for rice, but not good for many other uses.
Grade 5 (very poor): Soils that rate between 10 and 19 percent are of very limited use, except for pasture, because of adverse conditions, such as shallowness, roughness, and alkali content.
Grade 6 (nonagricultural): Soils that rate less than 10 percent include, for example, tidelands, riverwash, soils of high alkali content, and steep broken land.

## Timber Soil Rating

A field study was started in 1947 on the relationship of soils, climate, and timber site quality. This paper reports on studies of 163 filed locations extending from the Pacific Ocean to the east side of the Sierra Nevada Mountains in Nevada. The soils were studied at each location, then classified, and the timber sitequality determined by referencing the height and age value to appropriate site class curves.

Four main soil factors appear to govern or limit the growth of conifers in California. These are A-Soil depth and texture characteristics; B--Soil permeability; C-Soil chemical characteristics; and D-Drainage and runoff properties. In addition, there is the climatic factor.

High sites for growing conifers in California need a deep soil of sufficiently fine texture to hold about 12\% or more of moisture; a permeable profile; no toxic chemical characteristics; acid reaction; a well drained profile; and a total annual rainfall of more than 40 inches.

A preliminary timber rating chart is presented in this paper based on assigning percentage ratings to five factors: A-Soil depth and texture; B-Soil permeability; C-Soil chemical characteristics; DDrainage and runoff properties; E-Climate.

Four climatic zones are considered in rating the timber sites in the Sierra Nevada and Coast Range Mountains of California and Nevada.

Timber Site Rating $=A \times B \times C \times D \times E$.

## Timber Soil Rating Chart

An Index for Rating the Value of Soils for Growing Timber in California

Factor A: Depth-Texture ${ }^{1}$

Depth-Texture	Rating in   percent	Depth   class
Over 72" depth	100	5
$60-72$	$90-100$	5
$48-60$	$80-90$	5
$36-48$	$70-80$	4
$24-36$	$50-70$	3
$12-24$	$30-50$	2
$0-12$	$0-30$	1

[^3]Factor B: Permeability


Factor C: Chemical (Alkalinity, Salinity, Etc.)

Chemical   effect	Rating in   percent	Toxicity
class		
None	100	$80-90$
Slight	$20-80$	S
Moderate	$0-20$	M
Strong		

Factor D: Drainage-Runoff

Drainage	Rating in percent	Drainage symbol
Well \& moderately well		
	100	w
Excessively	80-95	r
Somewhat poorly	40-80	i
Poorly and very poorly		
	10-40	$p$

Factor E: Climate


## Importance of Soil Classification and Rating of Soil for Timber Sites

The classification of soil together with a rating of soil for timber site quality will strengthen the California forest resources survey in two ways. First, it will facilitate and improve the quality of the timber site classification. Previously, this classification was based entirely on the height-age relationship of dominant trees without reference to the soil. Ratings were satisfactorily made where dominants were present, as in the case of virgin timber or older second growth. On the other hand, difficulties were encountered in making reliable ratings in many cut-over or burnedover areas where suitable dominants were infrequent or entirely absent. Also, in some cases where timber growth was absent, it could not be determined with any degree of certainty whether the sites were suitable at all for growing timber. In present forest resources surveys, these difficulties are overcome by rating timber sites from soil in areas lacking dominant trees. Second, the maps produced by the survey, since they show the location of good, fair, poor, and unsuitable sites for growing various kinds of timber trees, will
have greater usefulness to those interested in managing forest lands for timber crops. To illustrate, a private enterprise seeking to purchase a forest property to provide a continuing supply of raw material for a lumber manufacturing or wood pulp plant can use the maps to locate the best soils for growing the kind of timber it wants. Also, public agencies interested in reforesting some of the 5 million acres of essentially unstocked and idle forestry sites in California can use the maps advantageously to plan and carry out planting programs. From the maps, the best soils can be selected for high-priority planting and the appropriate species for those soils can be determined.

Areas outside the boundary of the present forest resources survey can be more easily appraised from a knowledge of the soil and climatic factors in their relationship to the vegetation and land use problems. Thus, a knowledge of the soils, such as that collected in the basic soil survey on agricultural lands, can and should be extended to natural resources surveys on the so-called wild lands of the country because a knowledge of soils and climate is just as necessary for a proper evaluation of the productivity of land for timber crops as for agricultural crops.


Figure 23.-Relationship between timber site rating and height-age index.

## NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{SOIL LEGEND}} \& \multicolumn{6}{|c|}{CONVENTIONAL AND SPECIAL SYMBOLS LEGEND} <br>
\hline \& \& \& \& \multicolumn{4}{|c|}{CULTURAL FEATURES} \& \multicolumn{2}{|l|}{SPECIAL SYMBOLS FOR SOIL SURVEY} <br>
\hline \multirow[b]{2}{*}{SYMBOL} \& \multirow{3}{*}{NAME} \& \multirow[b]{2}{*}{SYMBOL} \& \multirow[b]{2}{*}{NAME} \& Boundaries \& \& \multicolumn{2}{|l|}{miscellaneous cultural features} \& \multicolumn{2}{|l|}{SOIL DELINEATIONS AND SYMBOLS} <br>
\hline \& \& \& \& National，state，or province \& －－ \& Farmstead，house（omit in urban area） （occupied） \& － \& Escarpments \& <br>
\hline \& \& \& Maywood gravelly loam， 0 to 2 percent slopes，occasionaly flod \& County or parish \& \& Church \& \& Bedrock（points down slope） \& vavprva <br>
\hline 101 \& （eapay sily clay， 0 oto 2 percent stopes， ，tequentyly liododed \& ${ }_{233}^{232}$ \& Mastoric clay loam，oto 2 2 ererent stiopes \& \& \& \& \& \& <br>
\hline 102
103 \&  \& 241
243 \&  \& Minor civid division \& －－ \& School \& $\dot{1}$ \& Other than bedrock（points down slope） \& ＂，＇＂， <br>
\hline 104 \& Willows sily clay，ot to percent siopes，treauenty flodod \& 255

257 \&  \& Reservatio（national forest or park，state \& \& mound（labe） \& 为 \& SHORT STEEP SLOPE \& <br>
\hline 106 \& Willows silty clay， 0 to 1 percent stopes \& 261 \& Millsholm－Atammont complex， 15 to 30 pericent slopes \& \& \& \& \& GULLY \& mm <br>
\hline 107
108 \& Scriberes silt loam， 0 to 1 1ercent silopes，occasionaly flooded \& 270
271 \& Balcom－Ayar complex， 15 to 30 percent slopes \& Land grant \& －．．－ \& Located object（abel） \& $\bigcirc^{\text {Tower }}$ \& \& <br>
\hline 109 \& Scriberes sitt oamm，oto 1 percenent slopes，treuently flooded \& ${ }_{2}^{275}$ \&  \& Limito of soil surve（ label） \& \& \& \& dEPRESSIION OR SIINK \& $\diamond$ <br>
\hline 110
112 \& Hustabel sandy 1 loan， 0 to 1 percent slopes
Westan loam， 0 oto percent slopes \& 276
280 \& Positas gravelly sandy loam， 30 to 50 percent slopes \& Field sheet matchine and neatine \& \& Tank（abel） \& \& SoIL SAMPLE（normaly not shown） \& ${ }^{\circ}$ <br>
\hline 113

114 \& Westan loam，sodic， 0 ot 2 percent Slopes \& | 300 |
| :--- |
| 305 | \& ${ }^{\text {Contra Costa－Millsholm complex，} 50 \text { to }}$ Con percent slopes \& \& \& Wells，il or gas \& d \& \& <br>

\hline ${ }^{1115}$ \& Clear Lake clay， 0 to 1 percent slopes，occasionaly floded \& 311 \& Contra Costa laam， 9 to 15 percent slopes \& $\underset{\substack{\text {（label）}}}{\text { AD HOC BOUNDARY }}$ \& lemele \& \& \& us \& <br>
\hline 1116
117 \& Clear Lake clay，calcareous， 0 to 2 percent siopes，occasionaly flooded \& 312
313 \& Saltanyon loam， 1 to percent stopes \& Small airport，airieled，park，oilifield， \& \& Windmill \& $\triangle$ \& Blowout \& $\checkmark$ <br>
\hline 118
1124 \& Clear Lake clay， 0 to 2 percent stopes，frequenty flooded \& ${ }_{315}^{315}$ \& Mallard clay loam， 2 to 5 percent slopes \& cemetery，or flood pool \& \& Kitchen midden \& $\square$ \& Clay spot \& <br>
\hline 125 \& Moonbend silt toam， 0 to 2 percent sispoes \& 320 \& Millsholm loam， 5 to 30 percent siopes \& State coordinate tick \& \& \& \& \& <br>
\hline 127
127 \& Moonbend sill toam， 0 oto 2 percern slipes，frequently flooded \& 329
330 \& Senorn－Milsholm－Atamont complex， 15 to 30 percent slopes \& 1890000 FEET \& \& \& \& Gravelly spot \& $\therefore$ <br>
\hline ${ }^{128}$ \& Mallard loam， 0 to 1 percent slopes \& 331 \& Sehorm－Milisholm－Rock outcrop complex， 30 to 50 percent stopes \& $\underset{\text {（sections and land grants）}}{\text { Lend }}$ \& $\stackrel{+}{ }+$＋ \& WATER FEATURES \& \& Gumbo，slick or scabby spot（sodic） \& $\varnothing$ <br>
\hline 129
130 \&  \& ${ }_{334}^{332}$ \&  \& \& \& \& \& \& <br>

\hline | 131 |
| :--- |
| 133 |
| 1 | \& Corieere silt oam， 0 to 2 2ercent slopes．frequenty floded \& | 337 |
| :--- |
| 345 | \& Mililshom－Saltanyon association． 5 to 15 percerts slopes \& ROADS \& \& drainage \& \& Dumps and other similar non soil ara \& 三 <br>

\hline 136
141 \&  \& 346
347 \&  \& Divided（median shown if scale permits） \& \& eennia，double line \& － \& Prominent till or peak \& \％ <br>
\hline 144
145 \&  \& 348
350
3 \& Boar－Sleeper complex， 30 to 50 percent slopes
Haploxererts， 30 to 50 percent \& other roads \& \& Perennial，single lin \& \& Rock outcrop（includes sandstone \& <br>
\hline 147
150
1 \& Hillate loam， 1 to 0.5 percent slopes \& 355
350 \& Venado clay 0 ot 2 2ercrent siopes \& Trail \& \& \& \& \& <br>
\hline 151 \& Arbuckle－sillgate complex， 1 Ato 5 percenent siopes \& 365 \& Leesville clay loam， 2 to 5 percent siopes \& \& \& imemintent \& \& Saline spot \& ＋ <br>

\hline | 152 |
| :--- |
| 155 | \& Arbuckle gravell loam， 1 105 percent slopes \& 366

370 \& Leesvilie clay loam， 0 oto 2 percents slopes \& ROAD Emblem \＆designations \& \& Drainage end \& Label only \& Sandy spot \& $\because$ <br>
\hline 160
170 \& Grandend loam， 0 oto 2ercerents slopes \& 371
519 \& Butres－Milisholm complex， 30 to os percents slopes \& Interstate \& （13） \& Canals or ditches \& Label only \& severy \& <br>
\hline ${ }_{171}^{172}$ \&  \& 520
521 \& Stonytord－Guenoc complex， 15 to 30 percent siopes \& Fedeal \& \& Double－line（labe） \& Cun \& Severely eroued spor \& <br>
\hline 174 \& Vina loam， 0 to 2 percent stopes，occasionaly flooded \& 524 \& Arand－Riverwash complex， 0 to 2 percents slopes，trequenty flooded \& \& （20） \& Double－fine（abel） \& \& Slide or sip（tips point upslope） \& ）， <br>
\hline 175
176
1785 \&  \& 526
527 \&  \& State \& （3） \& Drainage andor ir irigation \& Label only \& Stony spot，very stony ypot \& 00 <br>
\hline ${ }_{185}^{177}$ \& Hoililian loany sand，channeled， 0 to 2 percent slopes
Riverwash \& 528
529
5 \& Maymen－EEtsel－Snook complex， 30 to 75 percent slopes
Maymen－Etsel－Mayacama complex， 30 to 75 percent Slopes \& count，farm or ranch \& 1293 \& LAKES，ponds And reservoirs \& \& \& <br>
\hline \& Westran loam， 0 to 2 percent slopes，occasionaly flooded \& 542
545
5 \& Okiota－Uuakella－Henneke complex， 15 to 50 perercent slopes \& RALROAD \& \& Perennial \& \& \& <br>
\hline 189 \& Arand very gravelly sandy loam， 0 to 2 percents slopes \& 548 \& Henneke－okiota complex， 30 to 00 percent slopes \& \& \& \& $\cdots$ \& \& <br>
\hline 190
193 \&  \& 549
557 \&  \& POWER TRANSMISSIION LINE \& －－－．－．．．－ \& Intermitent \& intory \& \& <br>
\hline 200
204 \& Clear Lake clay． 0 ot 2 percent Slopes，occasionaly floded \& 564
570 \& Fouts－Yorkvile－SGuawrock association， 15 to 50 percent slopes \& \& \& miscellaneous water features \& \& \& <br>
\hline ${ }_{205}^{205}$ \& Capay clay， 0 to 3 percernt slopes \& 590
590
50， \& Neuns－Marpa－Goulding complex， 30 to 050 percent Slopes \& PIPE LINE（normaly not shown） \& \& Marsh or swamp \& 堇 \& \& <br>
\hline ${ }_{2}^{210}$ \& Coval loam， 0 to 3 percent slopes \& 592 \& Neuns－Gouldinin－Sheeition comple， 50 to 75 percent \& FENCE（normally not shown） \& － \& \& \& \& <br>
\hline 211
212 \& Coval lay loam，to 3 percent slopes \& 年97 \& Yollabily－Rock outcrop－Freezeout complex， 50 to 75 percent slopes \& EVYES \& \& Spring \& a \& \& <br>
\hline ${ }_{215}^{213}$ \&  \& 599
600 \&  \& \& \& Well，artesian \& － \& \& <br>
\hline ${ }_{216}^{216}$ \& Altamont－sehorn complex， to 15 15 percent slopeses \& 610 \&  \& Without road \& ＂＂＂n＂＂ \& \& \& \& <br>
\hline 218

220 \& Sehorn－Atamont complex， 30 to 50 percent Slopes \& $$
\begin{aligned}
& 650 \\
& 651 \\
& 65
\end{aligned}
$$ \& Bamush－Marpa complex， 15 to 30 percent slopes

Bamush－Mara compex， 30 to 50
eercent siopes \& With road \&  \& Well，irigation \& $\sim$ \& \& <br>
\hline ${ }_{230}^{221}$ \& Altamont silty clay， 9 to 1 15 percent siopes
Corning clay loam， 1 to 5 percent slopes \& \& \& With railroad \& 边 \& Wet spot \& $\underline{\square}$ \& \& <br>
\hline \& \& \& \& dams \& \& \& \& \& <br>
\hline \& \& \& \& Large（to scale） \& $\cdots$ \& \& \& \& <br>
\hline \& \& \& \& Medium or small \& nate \& \& \& \& <br>
\hline \& \& \& \& PITS ${ }^{\text {（Named where applicaid }}$ \& w \& \& \& \& <br>
\hline \& \& \& \& Gravel pit \& $\chi$ \& \& \& \& <br>
\hline \& \& \& \& Mine or quary \& 父 \& \& \& \& <br>
\hline
\end{tabular}







Joins sheet 9, Potato
SCAL 1:24000
$\qquad$





scale $1: 24000$
0
$\qquad$

Sint John mountain california







SCALE 1:24000


STONYFORD, CALIFORNI 7.5MNUTE SERIES
SHEETNUMBER 3 OF





SCALE 1:24000
AIL CANYON, CALIFORNIA 7.5MNUTE SERES
HEETNUMEER 4 OF


This soilsurvey was complied dy he U.S.D.Deparmernee




Sins shoet 73 , Sties














FOUTS SPRINGS, CALIFORNIA 7.5MINUTE SERIES
SHEETNUMER 10 OF 3































$\qquad$






SALT CANYON, CALIFORNIA THemuli erif





CORTINA CREEK, CALIFORNIA























[^0]:    Use and Management
    Major use: Livestock grazing
    For information about management, see the "Use and Management" section of this publication.

[^1]:    ${ }^{1}$ For soils in capability classes 2 through 8. Class 1 land is excluded.
    ${ }^{2}$ Permeability of the B horizon or control section.
    ${ }^{3}$ Including somewhat poorly drained soils.
    ${ }^{4}$ Subclass "e" if slope is more than 50 percent.
    ${ }^{5}$ Subclass "e" if slope is more than 30 percent.

[^2]:    ${ }^{1}$ Moderately well drained according to current terminology.
    ${ }^{2}$ Somewhat poorly drained according to current terminology.
    ${ }^{3}$ Poorly drained or very poorly drained according to current terminology.
    ${ }^{4}$ Salinity/sodicity according to current terminology.
    ${ }^{5} \mathrm{pH}$ less than 5.0

[^3]:    ${ }^{1}$ No effect to rating for textures with $12 \%$ or more available water capacity.

